

Report ID 2018-W11 –SO16-SHZ

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS/18/10777

Analog & MEMS Group (AMS)

Qualification of ST Shenzhen as Assembly and Test & Finishing site for selected products of General Purpose Analog and Industrial & Power Conversion Divisions in SO16 package

WHAT:

Progressing on activities related to production rationalization and capacity increase, ST is pleased to announce the qualification of some IPC (Industrial & Power Conversion) and GPA (General Purpose Analog) products in ST Shenzhen.

Please find more information related to the transfer of the impacted products:

	Current process	Modified process	Comment
Material			
Diffusion location	N	No change	
Assembly location ST Bouskoura ST Shenzhen Amkor Philippines (TSM104) Amkor Philippines (TSM104)			
Test location	ST Bouskoura	ST Shenzhen	
Molding compound	Hitachi MP8000 Sumitomo G700K (ST8034) Sumitomo G630AY		No change for TSM104
Die attach	HITACHI EN4900 ST10 ABLESTIK 8601S-25 (ST8034)	ABLESTIK 8601S-25	No change for TSM104
Lead frame	Copper 85x85mils(ST8034) Copper 94x125 Copper 94x160 (TSM102)	Copper 94x125Copper 94x150oper 94x160 (TSM102)Copper 94x200 (TSM102)Gold wire 1milCopper wire 1 mil	
Wire	Gold wire 1mil Copper wire 1 mil (ST8034)		
Plating	Plating Preplated e4		No change
MSL	N	No change	

Samples of vehicle test are available now and other samples will be launched upon customer's requests. Please submit requests for samples within 30 days of this notification.

WHY:

The purpose of the transfer is to rationalize our production tool and increase capacity.

HOW:

The qualification is based on representative Test vehicles, using internal ST rules for changes.
To validate the change, dedicated engineering trials have been performed and reliability report is attached.

IMPACTS OF THE CHANGE:

Form/Fit/Fonction : No change

WHEN:

For all impacted products, estimated 1st shipment start date is wk35 2018.

Marking and traceability:

Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales type, date code and lot number.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

Shipments may start earlier with the customer's written agreement.

	Manufactured under patents or patents pending						
ronics	PbFree MSL: X	n: COUNTRY Second level interconnect Bag sealed date: XX XXX XXXX Catergory: ECOPACK/Rohs					
E	TYPE	Commercial product					
croele	Total Qty: Trace codes	Finished good XXXX PPYWWLLL WX TF PPYWWLLL WX TF PPYWWLLL WX TF					
N	Marking MA	ARKING					
5	Bulk Id Num	ber					
~	Bar code						
	Please pro	ovide the bulk Id for any inquiry					

On tracecode "PP" code will move from "CZ" (ST Bouskoura) to "GK" (ST Shenzhen)

Reliability Report Qualification of ST Shenzhen as Assembly and Test & Finishing site for selected products of GPA and IPC Divisions in SO16 package

Product Line	U187, 0102, UW55 16-pin smartcard interfaces,	Wafer fab	ST Singapore, ST Agrate,
	16-pin smartcard interfaces,	Wafer fab	ST Agrate
			SI Agraie,
	VOLTAGE AND CURRENT		ST Catania
Product Description	CONTROLLER, 3 to 5.5 V,		
	low-power, up to 400 kbs RS-		
	232 drivers and receivers,	Assembly plant	ST Shenzhen
P/N	ST8034TDT, TSM102/A,		
r/in	ST3232B		
Product Group	AMS		ST Grenoble,
Product division	General Purpose Analog &RF,	Daliability Lab	ST Casteletto,
Product division	Industrial Power Conversion	Reliability Lab	ST Catania
Package	SO16		ST Shenzhen
Silicon Process technology	BCD6S, Bipolar, BCD3S,		

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicrolectronics.

TABLE OF CONTENTS

1	APPL	LICABLE AND REFERENCE DOCUMENTS	. 10
2	GLO	SSARY	. 10
3	RELI	ABILITY EVALUATION OVERVIEW	. 10
		OBJECTIVES	
	3.2	CONCLUSION	. 10
4	DEVI	CE CHARACTERISTICS	. 11
	4.1	DEVICE DESCRIPTION	. 11
	4.2	CONSTRUCTION NOTE	. 14
5		S RESULTS SUMMARY	
	5.1	TEST VEHICLE	. 15
		TEST PLAN AND RESULTS SUMMARY	
	5.3	TESTS DESCRIPTION	. 17

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description			
JESD47	Stress-Test-Driven Qualification of Integrated Circuits			
0061692	592 Reliability tests and criteria for qualifications			

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

To qualify SO16 package in ST Shenzhen for General purpose analog and Industrial & Power Conversion products.

3.2 Conclusion

Qualification Plan requirements will have to be fulfilled without issue. It is stressed that reliability tests have to show that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests have to demonstrate the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 **Device description**

ST8034T, ST8034AT, ST8034P, ST8034C

16-pin smartcard interfaces

Datasheet - production data

Features

- · Complete smartcard interface
- ISO 7816 and EMV[™] 4.3 payment systems compatible
- One protected half-duplex bidirectional buffered I/O line to the smartcard
- 5 V or 3 V (or 1.8 V in case of ST8034P) selectable smartcard supply voltage (V_{CC}). Ensures controlled V_{CC} rise and fall times and provides smart overload detection with glitch immunity.
- Optional chip select function allows the device interface to be isolated from the host microcontroller signals - allows parallel combination of the card interface devices (ST8034C)
- Card clock generation by integrated crystal oscillator or from external clock source

- Card clock frequency up to 20 MHz, programmable by CLKDIV pin, with synchronous frequency changes
- Optional VCC_SEL input for pin-controlled selection of V_{CC}; 5 V or 3 V or 1.8 V (ST8034P)
- Automatic card activation and deactivation sequences initiated by the microcontroller
- Emergency deactivation sequences initiated by a card supply short-circuit, card take-off, falling V_{DD}, V_{DDP}, or V_{DD(INTF)} or by the interface device overheating
- Voltage supply supervisors
 - With a fixed threshold (V_{DD}, V_{DDP}, and V_{DD(INTF}))
 - Optionally with an external resistor divider to set the V_{DD(INTF)} threshold (PORADJ pin; ST8034P and ST8034C)
- Multipurpose card status signal OFF
- Non-inverted card reset pin RST driven by the RSTIN input
- Thermal and short-circuit protection of all card contacts
- · Card presence detection contacts debounced
- Enhanced card side ESD protection of 8 kV
- Common SO16 3.9 x 9.9 mm body or a spacesaving QFN16 3 x 3 mm package
- Temperature range -25 to +85 °C

Applications

Smartcard readers for

- Set-top boxes
- Pay-TV
- Identification
- Banking
- Tachographs

- ADJUSTABLE OUTPUT VOLTAGE :
- Abdot Abdot

DESCRIPTION

The TSM102 is a monolithic IC that includes two op-amps, two comparators and a precision voltage reference. This device is offering space and cost saving in many applications like power supply management or data acquisition systems.

ORDER CODE

Part Number	Temperature	Package
Part Number	Range	D
TSM102I	-40°C, +85°C	•
TSM102AI	-40°C, +85°C	•

D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

ST3232B, ST3232C

3 to 5.5 V, low-power, up to 400 kbs RS-232 drivers and receivers

Datasheet - production data

life.augmented

The ST3232B and ST3232C have two receivers and two drivers.

The devices are guaranteed to run at data rates of 250 kbps while maintaining RS-232 output levels. Typical applications are notebooks, subnotebooks and palmtop computers, batterypowered equipment, hand-held equipment, peripherals, and printers.

Table 1: Device summary Order code Temp, range Package Packaging									
Order code	Temp. range	Раскаде	Packaging						
ST3232CDR	0 to 70 °C	SO16	2500 parts						
ST3232BDR	-40 to 85 °C	(tape and reel)	per reel						
ST3232CWR	0 to 70 °C	SO16L	1000 parts						
ST3232BWR	-40 to 85 °C	(tape and reel)	per reel						
ST3232CTR	0 to 70 °C	TSSOP16	2500 parts						
ST3232BTR	-40 to 85 °C	(tape and reel)	per reel						

Features

- 300 µA supply current
- 300 kbps minimum guaranteed data rate
- 6 V/µs minimum guaranteed slew rate
- Meets EIA/TIA-232 specifications down to 3 V
- Available in SO16, SO16L, and TSSOP16 packages

Description

The ST3232B and ST3232C devices are 3 V powered EIA/TIA-232 and V.28/V.24 communication interfaces with low power requirements and high data-rate capabilities.

These devices have a proprietary low dropout transmitter output stage providing true RS-232 performance from 3 to 5.5 V supplies. The devices require only four small 0.1 mF standard external capacitors for operation from a 3 V supply.

4.2 Construction note

	P/N ST8034TDT	P/N TSM102/A	P/N ST 3232B		
	Wafer/Die fab. informa	ition			
Wafer fab manufacturing location	ST Catania	ST Singapore	ST Singapore		
Technology	BCD6S	Bipolar	BCD3S		
Die finishing back side	RAW SILICON	RAW SILICON	Lapped SILICON		
Die size (microns)	1608x1700 μm	1860x3400µm	1820x2380µm ²		
Bond pad metallization layers	AlCu	AlSiCu	AlSiCu		
Passivation type	TEOS/SiN/Polyimide	SiN	USG-PSG-SiON- PIX		
	Assembly information	n			
Assembly site		ST Shenzhen			
Package description		SO16			
Molding compound	Sumitomo G630AY				
Frame material	Copper				
Die attach process		Glue			
Die attach material		Ablestick 8601 – S25			
Wire bonding process	Tel	hrmosonic ball bondin	g		
Wires bonding materials/diameters	Cu 1 mil				
Lead finishing process	Preplated				
Lead finishing/bump solder material		NiPdAu			

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Process/ Package	Product Line	Comments
1	BCD6S / SO16	UI87	ST8034 (lot GK7510KX01)
2	Bipolar /SO16	0102	TSM102/A (lot GK8022FH01)
3	BCD3S/SO16	UW55	ST3232B (lot GK7460VM01)

5.2 Test plan and results summary

]	Failure/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot1 UI87	Lot 2	Lot 3			Note
Die orie	nted to	ests	-						-	-	
HTB/ HTOL	N	JESD22 A-108	Ta = 125°C, BIAS		168 H 500 H 1000 H						
HTSL	N	JESD22 A-103	$Ta=150^{\circ}C$		168 H 500 H 1000 H	0/100 0/100 On going	0/80 0/80 On going	0/77 0/77 0/77			
Packag	e Orie	ented Tests	-						-	-	-
PC		JESD22 A-113	Drying 24 H @ 125°C JL1 (Store 168 H @ Ta=85°C Rh=85%) JL2 (Store 192 H @ Ta=30°C Rh=60%) Over Reflow @ Tpeak=260°C 3 times		Final	PASS MSLS3	MSL3				
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H 168h	0/80	0/80	0/77			
TC	Y	JESD22 A-104	Ta = -65° C to 150° C		200 cy 500 cy 1000cy	0/80 0/80	0/80 On going	0/77 0/77			
THB	Y	JESD22 A-101	Ta = 85°C, RH = 85%, BIAS		168 H 500 H 1000 H						

Scanning acoustic microscopy, check for delamination at die/resin interface, Lead/Resin interface and in through scan:

UI87

	Lot	T : 1	SAM result					
Device		Trial	Qty	Die	Lead	T-scan		
		то	20	0/20	0/20	0/20		
	GK7510KX01	MSL3	20	0/20	0/20	0/20		
SKQ7*UI87CE5		TC200	20	0/20	0/20	0/20		
		TC500	20	0/20	0/20	0/20		
		РРТ	20	0/20	0/20	0/20		

UW55

01100						
Device	Lot	Trial	SAM result			
			Qty	Die	Lead	T-scan
7TI8*A6C127C	GK7460VM01	то	20	0/20	0/20	0/20
		MSL3	20	0/20	0/20	0/20
		TC200	20	0/20	0/20	0/20
		TC500	20	0/20	0/20	0/20
		РРТ	20	0/20	0/20	0/20

5.3 Tests Description

Test name	Description	Purpose					
Die Oriented							
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, sili- con degradation, wire-bonds degradation, ox- ide faults.					
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate)	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita-	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to					
Bias HTSL High Temperature Storage Life	tions; The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	mobile contamination, oxide ageing, layout sensitivity to surface effects. To investigate the failure mechanisms acti- vated by high temperature, typically wire- bonds solder joint ageing, data retention faults, metal stress-voiding.					
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in early life.					
Package Oriented	<u>.</u>						
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" ef- fect and delamination.					
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.					
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials in- teracting in the die-package system. Typical failure modes are linked to metal displace- ment, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.					

Report ID 2018-W11 –SO16-SHZ

Test name	Description	Purpose	
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.		
THB Temperature Hu- midity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambi- ent temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	
Other			
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.	
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Re- moving the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.	