

VND5004ASP30-E (VH01)

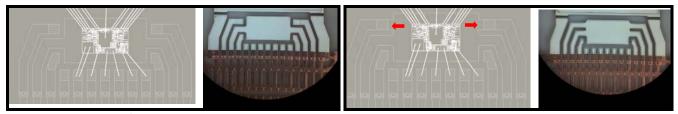
Package MultiPowerSO30 New frame for sagging wire improvement

	Revision history								
Rev.	Date of Release	Author	Changes description						
0.1	September 4 th 2014	F. Ceraulo - APG Q&R Catania	Creation						

RR002714CT2235 Page: 1 of 10

	Table of contents						
Section	Pag	Content					
1	3	Reliability evaluations overview					
1.1	3	Objectives					
1.2	3	Results					
2	4	Traceability					
3	5	Devices characteristics					
3.1	5	Generalities					
3.2	6	Pins connection					
3.3	6	Blocks diagram					
4	7	Reliability qualification plan and results – Summary table					

RR002714CT2235 Page: 2 of 10


- 1. Reliability evaluations overview

1.1 Objectives

Aim of this report is to present the results of the reliability evaluations performed on **VND5004ASP30-E** (VH01 as ST internal code) chosen as test vehicle to release in production a new frame for package MultiPowerSO30.

This product is a 4mohm Dual Channel High Side Driver with analog current sense for Automotive Applications designed in VIPower M05 technology, composed by two power dice (VNI4 as ST internal silicon line) and one signal die (VNG4 as ST internal silicon line) both diffused in ST AMK6 Ang Mo Kio (Singapore) 6" wafer fab.

The new frame is introduced for sagging wire improvement and was designed to make the floating paddle more rigid reducing the vertical vibration during handling.

Current frame New frame

Change between the current and the new frames occurs only in a geometry dimension (see red arrows for details) but not in the material or in the assembly configuration.

The qualification was done according to **AEC_Q100 Rev.G** specification following the path described here below:

Te	st group as per AEC-Q100 Rev.G	Performed (Y/N)	Comment
Α	Accelerated Environment Stress	Y	
В	Accelerated Lifetime Simulation	N	Not applicable
С	Package Assembly Integrity	Y	
D	Die Fabrication Reliability	N	Not applicable
Е	Electrical Verification	N	Not applicable
F	Defect Screening	N	Not applicable
G	Cavity Package Integrity	N	N/A: not for plastic packaged devices

See details per each test group in section 4 of this report.

In the below table a comparison between the AEC-Q100 and ZVEI requirements for this kind of change (lead frame dimension) vs the applied ST qualification plan is reported:

RR002714CT2235 Page: 3 of 10

Automotive Product Group

Quality and Reliability Reliability Report

		Tes	t Grou	рA		Test G	roup B		Test G	roup C			Tes	t Grou	p D				Tes	t Grou	рE		
	тнв	AC	тс	РТС	HTSL	HTOL	ELFR	WBS	WBP	SD	PD	EM	TDDB	нсі	NBTI	SM	нвм	СДМ	LU	ED	GL	ЕМС	sc
AEC-Q100		x	×	×						x	x												x
ZVEI		x	x	x						x	x												х
ST		х	х					x	x	x	x												

The applied qualification plan was addressed to investigate about failure mechanisms related to the thermo mechanical and humidity stress while the impact of the change is considered negligible vs the failure mechanism related to PTC and SC (no change in wires/assembly configuration/die attach).

1.2 Results

All reliability tests have been completed with positive results neither functional nor parametric rejects were detected at final electrical testing.

The Package Assembly Integrity (test Group C) pointed out neither abnormal break loads nor forbidden failure modes.

Based on the overall positive results we consider the products qualified from a reliability point of view.

- 2. Traceability

Wafer fab information						
Wafer fab manufacturing location	ST AMK6 Ang Mo Kio (Singapore)					
Wafer diameter (inches)	6					
Silicon process technology	VIPower M05					
Die finishing back side	Ti-Ni-Au					
Die size (micron)	VNG4 (signal): 2800 x 1560 VNI4 (power): 7990 x 4000					
Metal levels / materials	VNG4 (signal): 2 levels / Ti/TiN/Ti/AlSiCu (3.2 μm last level) VNI4 (power) : 1 level / Ti/AlSiCu (4.5 μm)					
Die finishing front side	SiN/POLYIMIDE					
Diffusion Lots #	VNG4 (signal): 61431X3, VNI4 (power): 63245T5					

Assembly Information						
Assembly plant location	ST Muar (Malaysia)					
Package description	Multi PowerSO_30					
Molding compound	RESIN SUMITOMO EME-G600C					
Wires bonding materials/diameters	Au 1.2mils (on signal) / Al 15mils (on power)					
Die attach material	GLUE QMI9507					
	PREFORM Pb/Ag/Sn 97.5/1.5/1					
Assembly Lots #	993360NR01 (old frame), 993360NR02 (new frame)					

Reliability Information					
Reliability test execution location	ST Catania (Italy)				

RR002714CT2235 Page: 4 of 10

Reliability Report

- 3. Device characteristics

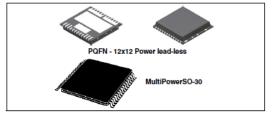
3.1 Generalities

VND5004A-E VND5004ASP30-E

Double $4m\Omega$ high side driver with analog current sense for automotive applications

Features

Max transient supply voltage	V _{CC}	41V
Operating voltage range	V _{CC}	4.5 to 27V
Max On-State resistance (per ch.)	R _{ON}	4 mΩ
Current limitation (typ)	I _{LIMH}	100A
Off state supply current	Is	2 μA ⁽¹⁾


1. Typical value with all loads connected

General

- Inrush current active management by power limitation
- Very low stand-by current
- 3.0V CMOS compatible input
- Optimized electromagnetic emission
- Very low electromagnetic susceptibility
- In compliance with the 2002/95/EC European directive
- Diagnostic functions
 - Proportional load current sense
 - Current sense disable
 - Thermal shutdown indication

Protection

- Undervoltage shut-down
- Overvoltage clamp
- Load current limitation
- Thermal shut down
- Self limiting of fast thermal transients
- Protection against loss of ground and loss of V_{CC}
- Reverse battery protection with self switch on of the PowerMOS (see Application schematic on page 18)
- Electrostatic discharge protection

Application

- All types of resistive, inductive and capacitive loads
- Suitable for power management applications

Description

The VND5004ATR-E and VND5004ASP30-E are devices made using STMicroelectronics VIPower technology. They are intended for driving resistive or inductive loads with one side connected to ground. Active V_{CC} pin voltage clamp and load dump protection circuit protect the devices against transients on the Vcc pin (see ISO7637 transient compatibility table). These devices integrate an analog current sense which delivers a current proportional to the load current (according to a known ratio) when CS_DIS is driven low or left open. When CS_DIS is driven high, the CURRENT SENSE pin is high impedance. Output current limitation protects the devices in overload condition. In case of long duration overload, the devicesa limit the dissipated power to a safe level up to thermal shut-down intervention. Thermal shut-down with automatic restart allows the device to recover normal operation as soon as a fault condition disappears.

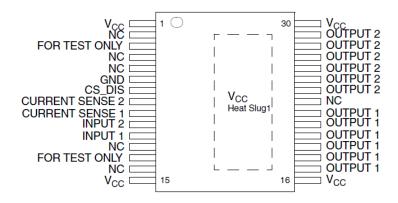
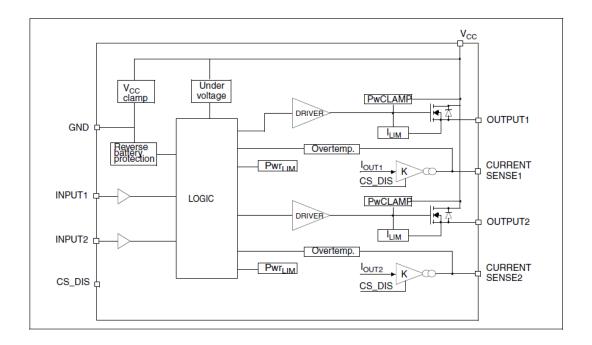

Table 1. Devices summary

Table 1. Devices summary							
Package	Order codes						
1 dekage	Tube	Tape and Reel	Tray				
PQFN-12x12 Power lead-less	-	VND5004ATR-E	VND5004A-E				
MultiPowerSO-30	VND5004ASP30-E	VND5004ASP30TR-E	-				


RR002714CT2235 Page: 5 of 10

3.2 Pins connection

3.3 Blocks diagram

RR002714CT2235 Page: 6 of 10

- 4. Reliability qualification plan and results

	Test group A: Accelerated Environment Stress									
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments					
A1	PC Pre Cond	- Preconditioning according to Jedec JESD22-A113F including 5 Temperature Cycling Ta=-40°C/+60°C - Reflow according to level 3 Jedec JSTD020D-1 - 100 Temperature Cycling Ta=-50°C/+150°C	Before AC, TC							
A2	THB Temp Humidity Bias	Ta=85°C, RH=85%, Vcc=24V for 1000 hours	-	-	Not Applicable					
А3	AC Autoclave	TC (Ta=-65°C / +150°C for 100 cycles) + AC (Ta=121°C, Pa=2atm for 96 hours)	77/2	0/77/2	1 Lot old frame 1 Lot new frame					
A4	TC Temp. Cycling	Ta=-65°C / +150°C for 500 cycles	77/2	0/77/2	1 Lot old frame 1 Lot new frame					
A5_	PTC Power Temp. Cycling	Ta=-40°C / +125°C for 1000 cycles.	-	-	Not Applicable					
A6	HTSL High Temp. Storage Life	Ta=150°C for 1000 hours.	-	-	Not Applicable					

	Test group A: Accelerated Environment Stress Robustness activity									
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments					
A4	TC Temp. Cycling	Ta=-50°C / +150°C for 1000 cycles	77/2	0/77/2	1 Lot old frame 1 Lot new frame					

RR002714CT2235 Page: 7 of 10

	Test group B: Accelerated Lifetime Simulation								
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments				
B1	HTOL High Temp. Op. Life	Bias Static stress (JESD22-A108): HTB Tamb=125°C, Vcc=28V for 1000 hours	-	-	Not Applicable				
B2	ELFR Early Life Failure Rate	Parts submitted to HTOL per JESD22-A108 requirements; GRADE 1: 24 hours at 150°C	-	-	Not Applicable				
В3	EDR Endurance Data Retention	Only for memory devices	-	-	Not Applicable				

Test group C: Package Assembly Integrity						
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments	
C1	WBS Wire Bond Shear		30 bonds /minimum 5 units/1 lot	All measurement within spec limits	1 Lot old frame 1 Lot new frame	
C2	WBP Wire Bond Pull		30 bonds /minimum 5 units/1 lot	All measurement within spec limits	1 Lot old frame 1 Lot new frame	
C3	SD Solderability		15/4	Passed	1 Lot old frame 1 Lot new frame	
C4	PD Physical Dimensions		10/4	Passed	1 Lot old frame 1 Lot new frame	
C5	SBS Solder Ball Shear	Only for BGA package	-	-	Not Applicable	
C6	LI Lead Integrity	Not required for Surface Mount Devices	-	-	Not Applicable	

RR002714CT2235 Page: 8 of 10

Test group D: Die Fabrication Reliability						
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments	
D1	EM Electromigration		-	-	Not Applicable	
D2	TDDB Time Dependent Dielectric Breakdown		-	-	Not Applicable	
D3	HCI Hot Carrier Injection		-	-	Not Applicable	
	NBTI Negative Bias Temperature Instability		-	-	Not Applicable	
D5	SM Stress Migration		-	-	Not Applicable	

	Test group E: Electrical Verification						
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments		
E2	ESD HBM / MM		-	-	Not Applicable		
E3	ESD CDM		-	-	Not Applicable		
E4	LU Latch-Up		-	-	Not Applicable		
E 5	ED Electrical Distributions		-	-	Not Applicable		
E7	CHAR Characterization		-	-	Not Applicable		
E8	GL Gate Leakage		-	-	Not Applicable		
E9	EMC Electromagnetic Compatibility		-	-	Not Applicable		

RR002714CT2235 Page: 9 of 10

Automotive Product Group

Quality and Reliability

Reliability Report

E10	SC Short Circuit Characterization	According to AEC-Q100-012	-	Not Applicable
-----	---	---------------------------	---	----------------

Test group F: Defects Screening Tests						
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments	
F1	PAT Process Average Testing		Not Applicable			
F2	SBA Statistical Bin/Yield Analysis					

Test group G: Cavity Package Integrity Tests							
AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments		
G1	MS Mechanical Shock						
G2	VFV Variable Frequency Vibration						
G 3	CA Constant Acceleration						
G 4	GFL Gross/Fine Leak						
G5	DROP Package Drop	Not applicable: not for plastic packaged devices					
G6	LT Lid Torque						
G7	DS Die Shear						
G8	IWV Internal Water Vapor						

Page: 10 of 10 RR002714CT2235

VIPower housed in PowerSO-30: Wire Sagging Improvement

WHAT:

In order to improve quality a modification of lead frame has been implemented. Corner leads are fused together in order to improve wire sagging and to avoid pad tilt/movement during handling

WHY:

Quality Improvement

HOW:

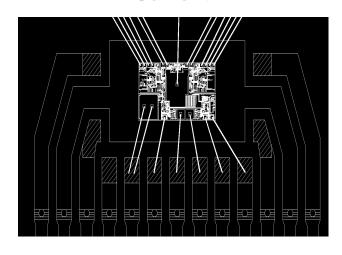
See enclosed description of the change and qualification report RR002714CT2235

HOW:

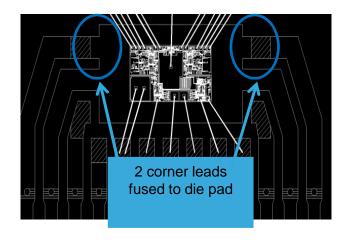
Change will be implemented according the following schedule

Samples: Available on demand

Qualification results: enclosed to this communication


Implementation: May 2015, but we are ready to implement the change prior this date

upon Customer agreement


VIPower housed in PowerSO-30: Wire Sagging Improvement

Current

No corner leads are fused together in

New

Corner leads are fused together in order to improve wire sagging and to avoid pad tilt/movement during handling

