

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

Reliability Report

QUALIFICATION PROCESS CHANGE FE

New DIE IN HBIP40, Capacity Change from Oxide to junction

TV: LX0501 - L7805CV - TO220 SINGLE GAUGE

General In	formation	Locations			
Product Line	LX0501	Wafer fab	Ang Mo Kio (Singapore)		
Product Description P/N	Positive Voltage Regulator Ics L7805CV				
Product Group		Assembly plant	ST Shenzhen		
Product division	IND.& POWER CONV. Voltage Vregulator & Vref				
Package	TO220 SG				
Silicon Process technology	HBIP40	Reliability Lab	IPD Catania Reliability Lab		
		Reliability assessment	Pass		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	MAY-2015	7	Vito Gisabella Giuseppe Giacopello	Giovanni Presti	Final report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

IPD (Industrial and Power Discrete Group)

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY	3
	RELIABILITY EVALUATION OVERVIEW	
-	3.1 OBJECTIVES	
	3.2 CONCLUSION	4
4	DEVICE CHARACTERISTICS	5
	4.1 DEVICE DESCRIPTION	5
	4.1 CONSTRUCTION NOTE	5
5	TESTS RESULTS SUMMARY	
	5.1 TEST VEHICLE	6
	5.2 TEST PLAN AND RESULTS SUMMARY	
6	ANNEXES	7
	6.1 TESTS DESCRIPTION	7

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

RER6088-79-GSB-2015

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Following Divisional Commitments towards a continuous improvement philosophy, we have replaced the old Oxide Capacitor structure with the new integrated Junction Capacitor, as a consequence of an improved product quality.

TV: L7805CV, TO220 SG, HBIP40 (new integrated Junction Capacitor).

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

RER6088-79-GSB-2015

4 DEVICE CHARACTERISTICS

4.1 Device description

The L78xx series of three-terminal positive regulators is available in several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable

4.1 Construction note

	L7805CV-LX0501			
Wafer/Die fab. information				
Wafer fab manufacturing location	Singapore Ang Mo Kio			
Technology	HBIP40V			
Die finishing back side	Cr/NiV/Au			
Die size	1320, 1630 micron			
Passivation type	P-Vapox/Nitride			
Wafer Testing (EWS) information				
Electrical testing manufacturing location	Ang Mo Kio EWS			
Tester	ETS 300			
Assembly information				
Assembly site	Shenzhen B/E			
Package description	TO220 SG			
Molding compound	Ероху			
Frame material	Bare copper			
Die attach material	PREFORM			
Wires bonding materials/diameters	WIRE Cu D2			
Final testing information				
Testing location	Shenzhen B/E			

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Package	Product Line	Comments
1	TO220 SG	LX0501	

5.2 Test plan and results summary

Test	Std ref.		Conditions	SS	Steps	Failure/SS	Note
Die Oriented Tests							
					168 H	0/77	
HTOL	JESI A-1		Tj = 125°C Vcc= +35V		500 H	0/77	
					1000 H	0/77	
					168 H	0/45	
HTSL	JESI A-1		Ta = 150°C		500 H	0/45	Engineering Evaluation
					1000 H	0/45	
Package O	riented Tests						
10	JESI	022			96 H	0/77	
AC	A-1	02	Pa=2Atm / Ta=121°C		168 H	0/77	Engineering Evaluation
					100 CY	0/77	
тс	JESI A-1		Ta = -65°C to 150°C		200 CY	0/77	
					500 CY	0/77	
					168 H	0/77	
тнв	JESI A-1		Ta = 85°C, RH = 85%, Vcc1= +24V		500 H	0/77	
		-			1000 H	0/77	
Other Test	S						
ESD	ANSI/ESD/ JS00		HBM +/- 2000V	3	Pass		
	ANSI/ES	SD S5.3.1	CDM 500V	3	Pass		

IPC (Industrial Power Conversion)

Voltage Vregulator & Vref

Quality and Reliability

RER6088-79-GSB-2015

6 ANNEXES

6.1 Tests Description

Test name Description		Purpose					
Die Oriented	Die Oriented						
HTOL High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	simulates the devices' operating condition in an					
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by					
Package Oriented							
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.					
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.						
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with					
Other Test							
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM: Human Body Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.					