

Reliability Qualification Report SO16N Leadframe Strip Change in Amkor (From HD to XD) - AMKOR PCN 140501

General Information				
Product Line MU6203				
Product From 9RQ7*MU62BBX				
Process Plan	A2 - BCD6 / A5 – BCD OFFLINE			
Package Technology	Q7 SO 16 .15 TO JEDEC MS-012			

Locations				
Wafer Fab Location	CM5F - Catania CTM8			
Assembly Plant Location	ZY1A SC AMKOR ATP1 - PHILIPPINES			
Testing Plant	SH1T ST SHENZHEN -CHINA 3068			
Reliability Assessment	ST MUAR (QA RELIABILITY LAB)			

Issued By: Mohd Ibrahim GHAZALI

Approved By: Francesco VENTURA

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	Pg : 3
2	TEST GLOSSARY	Pg : 3
3	RELIABILITY EVALUATION OVERVIEW	Pg : 4
	3.1 OBJECTIVES	Pg : 4
	3.2 CONCLUSIONS	Pg : 4
4	DEVICE CHARACTERISTICS	Pg : 5
	4.1 BONDING DIAGRAM	Pg : 5
	4.2 PACKAGE OUTLINE/MECHANICAL DATA	Pg : 6 – 7
	4.3 TRACEABILITY	Pg : 8
5	TEST RESULTS SUMMARY	Pg : 9
	5.1 LOT INFORMATION	Pg : 9
	5.2 TEST PLAN AND RESULTS SUMMARY	Pg : 9
	5.3 SAM ANALYSIS	Pg : 10
	5.4 DPA STATUS	Pg : 10
6	TESTS DESCRIPTION	Pg : 11
	6.1 DIE AND PACKAGE TESTS DESCRIPTION	Pg:11

1 APPLICABLE AND REFERENCE DOCUMENTS

Document Reference	Short Description
AEC-Q100	Stress test qualification for integrated circuits
SOP 2.6.11	Project management for product development
SOP 2.6.19	Front-end technology platform development & qualification
SOP 2.6.2	Internals change management
SOP 2.6.7	Product maturity level
SOP 2.6.9	Package and process maturity management in Back End
SOP 2.7.5	Automotive products definition and status
0061692	Reliability tests and criteria for product qualification
8160601	Internal reliability evaluation report template
8161393	General specification for product development

2 TEST GLOSSARY

TEST NAME	DESCRIPTION
PC (JL3)	Preconditioning (Solder Simulation)
тс	Temperature Cycling
AC or PPT	Autoclave or Pressure Pot Test
HTSL	High Temperature Storage Life

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

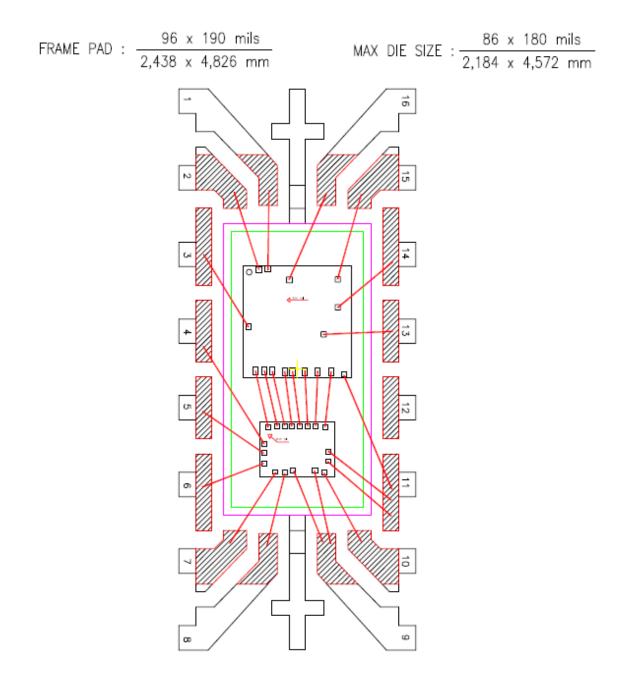
The aim of this report is to present the results of the reliability assessment evaluation performed on L6591TR-9LF/ or L6591-9LF/ (9RQ7*MU62BBX) – the Lead frame strip changed in Assembly Plant AMKOR ATP1 – PHILIPPINES (from HD to XD), impact on package Q7 SO 16 .15 TO JEDEC MS-012 (with reference to AMKOR PCN 140501).

The main purpose is to qualify XD Leadframe as a new strip for Q7 SO 16 .15 TO JEDEC MS-012.

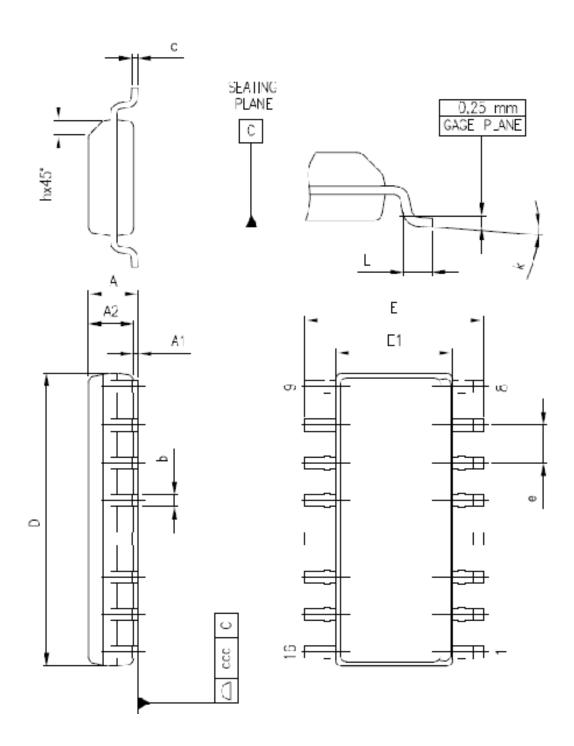
L6591TR-9LF/ or L6591-9LF/ is processed in A2 - BCD6 & A5 - BCD OFFLINE, diffused in CM5F - Catania CTM8 and assembled in AMKOR ATP1 – PHILIPPINES.

For the reliability assessment evaluation the following test were carried out:

- Preconditioning JL3 (3X Reflow)
- Temperature Cycling (TC)
- Autoclave / Pressure Pot Test (AC / PPT)
- High Temperature Storage Life (HTSL)


3.2 Conclusions

All reliability tests have been completed with positive results (no any electrical failure that can be link to new Lead-frame strip changed from HD to XD). Package oriented test and destructive physical analysis - SAM also have not put in evidence any criticality to package robustness.


4 DEVICE CHARACTERISTICS

4.1 Bond Diagram

Package Outline / Mechanical Data

Date: 8th October 2016

4.2 Package Outline / Mechanical Data

	DIMENSIONS						1
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
A			1.75	1.43	1.55	1.68	
A1	0.10		0.25	0.12	0.15	0.18	
A2	1.25			1.48	1.52	1.56	
b	0.31		0.51	0.375	0.40	0.425	
С	0.17		0.25			0.238	
D	9.80	9.90	10.00	9.82	9.85	9.88	(1) (3)
E	5.80	6.00	6.20	5.90	6.00	6.10	
E1	3.80	3.90	4.00	3.87	3.90	3.93	(2) (3)
e		1.27			1.27		
h	0.25		0.50	0.425		0.50	
L	0.40		1.27	0.585	0.635	0.685	
k	0		8	2	4	8	DEGREES
CCC			0.10			0.04	

4.3 Traceability

Wafer Fab Information					
Wafer fab manufacturing location	CM5F - Catania CTM8				
Wafer diameter	6 inch				
Wafer thickness (XUL25CB5)	375+/-20 UM				
Silicon process technology	A2 - BCD6				
Die finishing back side	RAW SILICON SINGLE GRIND (TYPICA				
Die finishing front side	TEOS /SiN / Polyimide				
Die size	81,81 UM				
Wafer Thickness (XU335AB6)	375+/- UM				
Silicon process technology	A5 - BCD OFFLINE				
Die finishing back side	CHROMIUM / NICKEL				
Die finishing front side	SiN (nitride)				
Die size	90,90 UM				

Assembly Information				
Assembly plant location	ZY1A SC AMKOR ATP1 - PHILIPPINES			
Package description	Q7 SO 16 .15 TO JEDEC MS-012			
Molding compound	Sumitomo G600			
Wire bonding materials/diameters	Au 1.0 Mils			
Die attach material	Ablestik 8290			
Lead frame material	XDLF SO S 16L96*190 C194 DR AG XDIDF #101385539			

Final Testing Information				
Electrical testing location SH1T ST SHENZHEN -CHINA				
Tester ASL1K				

5. TEST RESULTS SUMMARY

5.1 Lot Information

Lot #	Diffusion Lot	Lot Details / Trace Code	Assy Lot Id	Testing Lot Id
1		GK6270WY01 / 7B623728	GK6270WY01	GK6270WY01

5.2 Test Plan and Results Summary (Electrical Test)

	Reliability Test Status						
No	o Test Prec Condition/ Method Steps	Steps	Fails/SS	Notes			
NO	Name	FIEC	Condition/ Method	Steps	Lot 1	NOLES	
1	PC (JL3)		Bake 24hrs @ 125°C Soak 192hrs @ 30°C/60%RH Reflow Profile = J-STD-020D (Tmax = 260°C)	Final	0 / 164	Pass	
2	2 TC Yes	Voc	Test Conditions =	200сус	0 / 77	Pass	
2		-65°C / +150°C	500сус	0 / 76	Pass		
3	AC	Yes	Test Conditions =	96hrs	0 / 77	Pass	
3	AC	162	Ta = 121°C / 2 ATM	168hrs	0 / 77	Pass	
	, HTS No Test Conditions =	500hrs	0 / 77	Pass			
4			Ta = +150°C	1000hrs	0 / 77	Pass	

NOTES

All units electrically tested good (all Pass) after each reliability readout. No any electrical failure found that can be link to the weakness of the assembly process or due the Lead-Frame Strip change from HD to XD in Amkor Philippines (ATP1).

5.3 Test Plan and Results Summary (SAM Analysis)

	Reliability Test Status						
No	Test	Prec	Condition/ Method	Steps	Fails/SS	Notes	
NO	Name	TIEC	Condition/ Method	Steps	Lot 1	Notes	
1	PC (JL3)		Bake 24hrs @ 125°C Soak 192hrs @ 30°C/60%RH Reflow Profile = J-STD-020D (Tmax = 260°C)	Final	0 / 60	No Delam	
2	2 TC Yes	Ves	Test Conditions =	200сус	0 / 20	No Delam	
2		-65°C / +150°C	500сус	0 / 19	No Delam		
3	AC	Yes	Test Conditions =	96hrs	0 / 20	No Delam	
3	AC	res	Ta = 121°C / 2 ATM	168hrs	0 / 20	No Delam	
_	- HTS No Test Conditions =	500hrs	0 / 20	No Delam			
5		Ta = +150°C	1000hrs	0 / 20	No Delam		

NOTES

SAM analysis did not reveal any delam on Die Attach Material (DAM) & Die / Molding Compound (Die Top) on sampling basis 20 pcs for each reliability test The Lead and diepaddle delam (die-pad front side / molding compound) after Reliability (TC Trial) is an intrinsic problem of this package and not related to the change being qualified.

All units with or without Lead delam passed the electrical testing after TC200 & TC500.

6. TESTS DESCRIPTION

6.1 Package tests description

TEST NAME	DESCRIPTION	PURPOSE	
PC (JL3) Preconditioning MSL3 (solder simulation)	The device is submitted to a typical temperature profile used for surface mounting after storage in a control moisture absorption.	As stand-alone test: to investigate the level of moisture sensitivity. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop-corn" effect and delamination.	
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are link to metal displacement, dielectric cracking, molding compound delamination, wire bonds failure, die crack.	
AC or PPT Autoclave / Pressure Pot Test	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature	To investigate corrosion phenomen affecting die or package materials, related to chemical contamination and package hermeticity. To point out critical water entry paths with consequent electrochemical and galvanic corrosion.	
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max temperature allowed by the package materials, sometimes higher than the max operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding	

Report Ref: MUA_REL (Q081016 MU62_PCN 140501)

Date: 8th October 2016

Reliability Qualification Report SO14N Leadframe Strip Change in Amkor (From HD to XD) - AMKOR PCN 140501

General Information				
Product Line MV0301				
Product From	BRK7*MV03AAX			
Process Plan				
Package Technology	K7 SO 14 .15 TO JEDEC MS-012			

Locations				
Wafer Fab Location	AM6F - Singapore 6"			
Assembly Plant Location	ZY1A SC AMKOR ATP1 - PHILIPPINES			
Testing Plant	MU1T ST MUAR - MALAYSIA			
Reliability Assessment	ST MUAR (QA RELIABILITY LAB)			

Issued By: Mohd Ibrahim GHAZALI

Approved By: Francesco VENTURA

Report Ref: MUA_REL (Q071016 MV03_PCN 140501) Date: 7th October 2016

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	Pg : 3
2	TEST GLOSSARY	Pg : 3
3	RELIABILITY EVALUATION OVERVIEW	Pg : 4
	3.1 OBJECTIVES	Pg : 4
	3.2 CONCLUSIONS	Pg : 4
4	DEVICE CHARACTERISTICS	Pg : 5
	4.1 BONDING DIAGRAM	Pg : 5
	4.2 PACKAGE OUTLINE/MECHANICAL DATA	Pg : 6 – 7
	4.3 TRACEABILITY	Pg : 8
5	TEST RESULTS SUMMARY	Pg : 9
	5.1 LOT INFORMATION	Pg : 9
	5.2 TEST PLAN AND RESULTS SUMMARY	Pg : 9
	5.3 SAM ANALYSIS	Pg : 10
	5.4 DPA STATUS	Pg : 10
6	TESTS DESCRIPTION	Pg : 11
	6.1 DIE AND PACKAGE TESTS DESCRIPTION	Pg : 11

1 APPLICABLE AND REFERENCE DOCUMENTS

Document Reference	Short Description
AEC-Q100	Stress test qualification for integrated circuits
SOP 2.6.11	Project management for product development
SOP 2.6.19	Front-end technology platform development & qualification
SOP 2.6.2	Internals change management
SOP 2.6.7	Product maturity level
SOP 2.6.9	Package and process maturity management in Back End
SOP 2.7.5	Automotive products definition and status
0061692	Reliability tests and criteria for product qualification
8160601	Internal reliability evaluation report template
8161393	General specification for product development

2 TEST GLOSSARY

TEST NAME	DESCRIPTION
PC (JL3)	Preconditioning (Solder Simulation)
тс	Temperature Cycling
AC or PPT	Autoclave or Pressure Pot Test
HTSL	High Temperature Storage Life

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

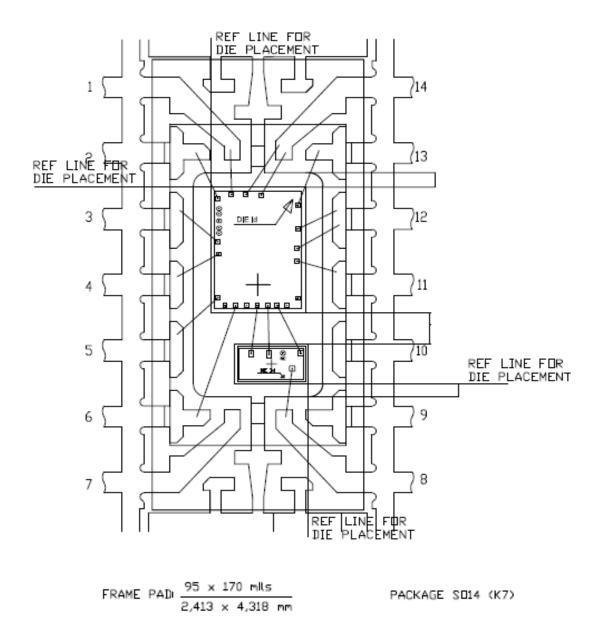
The aim of this report is to present the results of the reliability assessment evaluation performed on L6564HTR-2/ or L6564H-2/ (BRK7*MV03AAX) – the Leadframe strip changed in Assembly Plant AMKOR ATP1 – PHILIPPINES (from HD to XD), impact on package K7 SO 14 .15 TO JEDEC MS-012 (with reference to AMKOR PCN 140501).

The main purpose is to qualify XD Lead-frame as a new strip for K7 SO 14 .15 TO JEDEC MS-012.

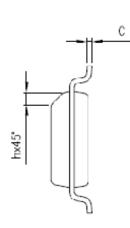
L6564HTR-2/ or L6564H-2/ is processed in A5 - BCD OFFLINE & A7 - BCD2S, diffused in AM6F - Singapore 6" and assembled in AMKOR ATP1 – PHILIPPINES.

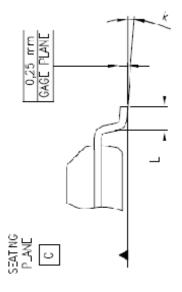
For the reliability assessment evaluation the following package oriented test were carried out:

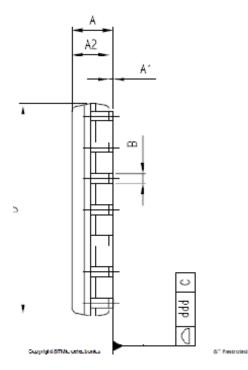
- Preconditioning JL3 (3X Reflow)
- Temperature Cycling (TC)
- Autoclave / Pressure Pot Test (AC / PPT)
- High Temperature Storage Life (HTSL).

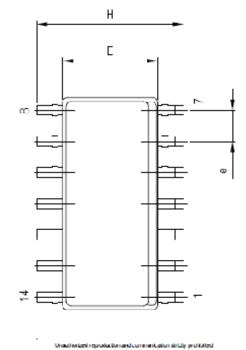

3.2 Conclusions

All reliability tests have been completed with positive results (no any electrical failure that can be link to new Lead-frame strip changed from HD to XD). Package oriented test and destructive physical analysis - SAM also have not put in evidence any criticality to package robustness.


4 DEVICE CHARACTERISTICS


4.1 Bond Diagram





4.2 Package Outline / Mechanical Data

Report Ref: MUA_REL (Q071016 MV03_PCN 140501) Date: 7th October 2016

Page: 6 / 11

4.2 Package Outline / Mechanical Data

	DIMENSIONS					1	
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
A	1.35		1.75			1.75	
A1	0.10		0.25	0.10	0.15	0.20	
A2	1.10		1.65	1.48	1.52	1.60	
В	0.33		0.51	0.35	0.40	0.455	
С	0.19		0.25	0.19	0.20	0.238	
D	8.55		8.75	8.60	8.65	8.70	(1)
E	3.80		4.00	3.80	3.90	4.00	
е		1.27			1.27		
н	5.80		6.20	5.90	6.00	6.10	
h	0.25		0.50	0.425		0.50	
L	0.40		1.27	0.50	0.635	0.685	
k	0		8	2	4	8	DEGREES
ddd			0.10			0.04	

NOTES:

 Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

(2) - Drawing dimensions include Single and Matrix versions.

4.3 Traceability

Wafer Fab Information				
Wafer fab manufacturing location AM6F - Singapore 6"				
Wafer diameter	6 inch			
Wafer thickness (XU327AB6)	254+/-20 UM			
Silicon process technology	A5 - BCD OFFLINE			
Die finishing back side	CHROMIUM / NICKEL			
Die finishing front side	SiN (Nitride)			
Die size				
Wafer Thickness (XUE40AE6)	375+/-20 UM			
Silicon process technology	A7 - BCD2S			
Die finishing back side	CHROMIUM / NICKEL / GOLD			
Die finishing front side	P-VAPOX(SiO2) / NITRIDE (SiN)			
Die size	81,81 UM			

Assembly Information					
Assembly plant location	ZY1A SC AMKOR ATP1 - PHILIPPINES				
Package description	K7 SO 14 .15 TO JEDEC MS-012				
Molding compound	SUMITOMO G600				
Wire bonding materials/diameters	Au 1.0 Mils				
Die attach material	ABLESTIK 8290				
Lead frame material	LF SO S 14L 95*170 C194 TLPPF 150B XD				

Final Testing Information				
Electrical testing location SH1T ST SHENZHEN - CHINA 3068				
Tester	ASL1K			

5. TEST RESULTS SUMMARY

5.1 Lot Information

Lot #	Diffusion Lot	Lot Details / Trace Code	Assy Lot Id	Testing Lot Id
1		GK6201BS01 / 7B618482	GK6201BS01	GK6201BS01

5.2 Test Plan and Results Summary (Electrical Test)

	Reliability Test Status							
No	No Nest Prec	ec Condition/ Method	Steps	Fails/SS	Notes			
NO	Name	FIEC	Condition/ Method	Steps	Lot 1	NOLES		
1	PC (JL3)		Bake 24hrs @ 125°C Soak 192hrs @ 30°C/60%RH Reflow Profile = J-STD-020D (Tmax = 260°C)	Final	0 / 164	Pass		
2	2 TC Yes	/es Test Conditions = -65°C / +150°C	500сус	0 / 77	Pass			
2			1000cyc	0 / 77	Pass			
3	40	Vac	Test Conditions =	96hrs	0 / 77	Pass		
3	AC	AC Yes $Ta = 121^{\circ}C / 2 \text{ ATM}$	168hrs	0 / 77	Pass			
	4 HTS No	TS No Test Conditions = Ta = +150°C	500hrs	0 / 77	Pass			
4			1000hrs	0 / 77	Pass			

NOTES

All units electrically tested good (all Pass) after each reliability readout. No any electrical failure found that can be link to the weakness of the assembly process or due the Lead-Frame Strip change from HD to XD in Amkor Philippines (ATP1).

5.3 Test Plan and Results Summar	y (SAM Analysis)
----------------------------------	------------------

	Reliability Test Status							
No	Test	Prec	Condition/ Method	Steps	Fails/SS	Notes		
NO	Name	FIEC		Steps	Lot 1	Notes		
1	PC (JL3)		Bake 24hrs @ 125°C Soak 192hrs @ 30°C/60%RH Reflow Profile = J-STD-020D (Tmax = 260°C)	Final	0 / 60	No Delam		
2	тс	Yes	Test Conditions =	500сус	0 / 20	No Delam		
2	-65°C / +150°C	1000сус	0 / 20	No Delam				
				96hrs	0 / 20	No Delam		
3	AC	Yes	Test Conditions = Ta = 121°C / 2 ATM	168hrs	0 / 20	No Delam		
				1000hrs	0 / 20	No Delam		
E	- HTS No Test Conditions =		500hrs	0 / 20	No Delam			
5			Ta = +150°C	1000hrs	0 / 20	No Delam		

NOTES

SAM analysis did not reveal any delam on Die Attach Material (DAM) & Die / Molding Compound (Die Top) on sampling basis 20 pcs for each reliability test The Lead and diepaddle delam (die-pad front side / molding compound) after Reliability (TC Trial) is an intrinsic problem of this package and not related to the change being qualified.

All units with or without Lead delam passed the electrical testing after TC500 & TC1000 and no lifted weld or broken weld during pull test after TC1000.

6. TESTS DESCRIPTION

6.1 Package tests description

TEST NAME	DESCRIPTION	PURPOSE
PC (JL3) Preconditioning MSL3 (solder simulation)	The device is submitted to a typical temperature profile used for surface mounting after storage in a control moisture absorption.	As stand-alone test: to investigate the level of moisture sensitivity. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop-corn" effect and delamination.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are link to metal displacement, dielectric cracking, molding compound delamination, wire bonds failure, die crack.
AC or PPT Autoclave / Pressure Pot Test	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity. To point out critical water entry paths with consequent electrochemical and galvanic corrosion.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max temperature allowed by the package materials, sometimes higher than the max operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding

Report Ref: MUA_REL (Q071016 MV03_PCN 140501)

Date: 7th October 2016

Reliability Report

General Information			Location	s
Product Line	MT57 (UAF0+U343)	Wafer fab location		CATANIA (UAF0) +
Product Description	Ballast dimmable controller for			ANG MO KIO(U343)
	OSRAM	Assembly plant location		AMKOR ATP1-
Product division	I&PC		Assembly plant location	PHILIPPINES
Package	SO16N			
Silicon process technology	CATANIA (UAF0) + ANG MO KIO(U343)		Reliability assessment	Pass

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
1.0	10-Oct-16	15	A. SPIEZIA	LeadFrame Strip
				change in Amkor

Approved by

G. CAPODICI

Table of Contents

1	AP	PPLICABLE AND REFERENCE DOCUMENTS	
2	RE	ELIABILITY EVALUATION overview	4
2	2.1	Objectives	4
2	2.2	Conclusion	4
3	De	evice Characteristics	5
3	8.1	Device description	5
	3.1.	.1 Generalities	5
	3.1.2	2 Pin connection	6
	3.1.3	.3 Block diagram	7
	3.1.4	.4 Bonding diagram: MT57ADA – rotated die version	8
	3.1.	.5 Package outline/Mechanical data	9
3	8.2 Tr	raceability	10
4	Tes	sts results summary	
4	l.1	LOTs information	11
4	.2	Test plan and results summary	11
4	.3	Die oriented tests	13
	4.3.	.1 High Temperature Operating Life	13
	4.3.2	2 High Temperature Reverse Bias	13
4	.4	Package oriented tests	14
	4.4.	.1 Pre-Conditioning	14
	4.4.2	.2 High Temperature Storage	14
	4.4.3	.3 Temperature Humidity Bias	14
	4.4.4	.4 Thermal Cycles	14
	4.4.	5 Autoclave	14
4	.5	Electrical Characterization Tests	15
	4.5.	.1 Latch-up	15
	4.5.2	.2 E.S.D.	15

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Short description
: Stress test qualification for integrated circuits : General Specification For Product Development

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

This report contains the reliability evaluation of the MT57 (UAF0+U343) device diffused in CATANIA (UAF0) + ANG MO KIO(U343) and assembled in SO16N in AMKOR ATP1-PHILIPPINES, in the overall plan of LeadFrame Strip change in Amkor (AMG/16/9945).

Below is the list of the overall trials performed on samples with new LeadFrame:

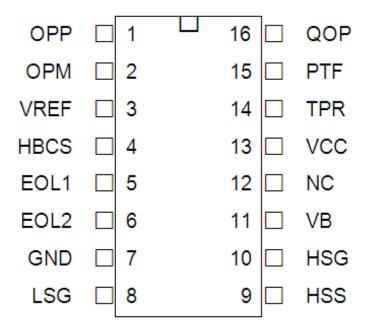
Package Oriented Tests

- Preconditioning
- Temperature Cycling
- Autoclave
- High Temperature Storage Life

2.2 Conclusion

Taking in account the results of the trials performed the MT57 (UAF0+U343) diffused in CATANIA (UAF0) + ANG MO KIO(U343) assembled in SO16N in AMKOR ATP1-PHILIPPINES can be qualified from reliability viewpoint.

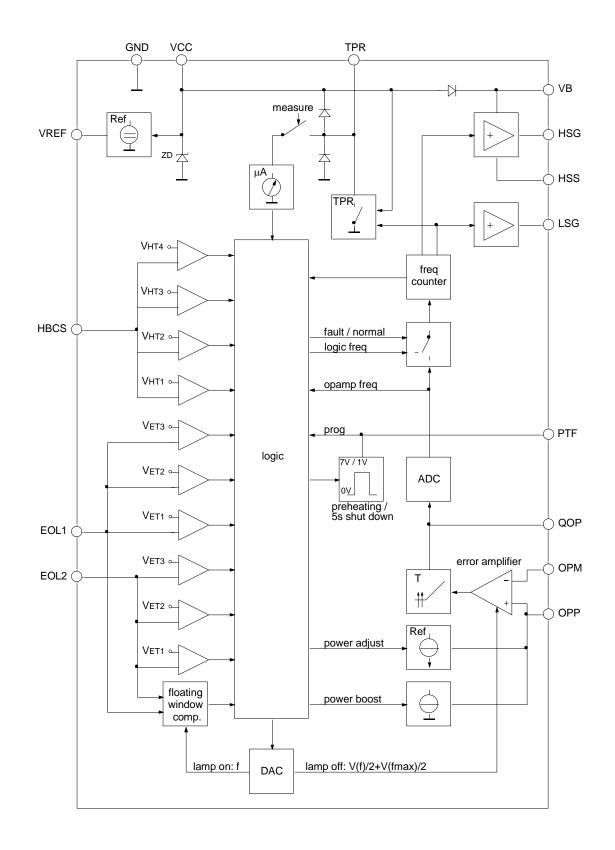
3 DEVICE CHARACTERISTICS


3.1 Device description

3.1.1 Generalities

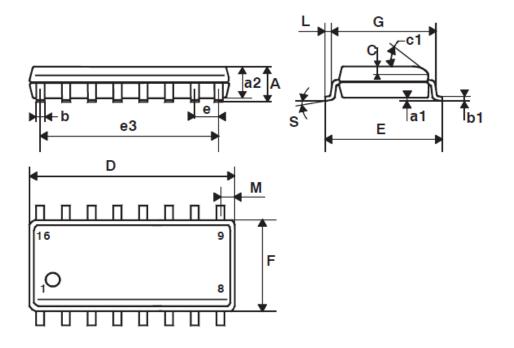
This IC is designed to drive the MOS half bridge of dimmable electronic ballast, a MOS transistor for preheating the filaments of a fluorescent lamp and a PNP transistor for the controlled Vcc supply of the IC. It is suitable for ballasts in "lamp to ground" topology as well as for ballasts in "capacitor to ground" topology.

All necessary monitoring functions like filament detection, ignition control, capacitive mode protection, end of life detection, hard rectifying protection and output voltage limitation are included as well as an error amplifier and a voltage reference.


3.1.2 Pin connection

symbol	pin	description			
OPP	1	Non inverting input of the error amplifier			
OPM	2	Inverting input of the error amplifier			
VREF	3	3.3V reference voltage			
HBCS	4	Half bridge current sensing			
EOL1	5	End of life, filament detection and control of the HBCS thresholds			
EOL2	6	End of life, filament detection and control of the HBCS thresholds			
GND	7	Ground			
LSG	8	Low side gate driver output and clock output for programming and power adjustment			
HSS	9	High side driver floating reference			
HSG	10	High side gate driver output			
VB	11	Bootstrapped supply voltage			
NC	12	Not connected			
VCC	13	Supply voltage			
TPR	14	Two point regulator for Vcc supply			
PTF	15	Digital input for programming and power adjustment, control of the preheat MOS			
QOP	16	Error amplifier output and frequency control input			

3.1.3 Block diagram



1 16 2 15 3 14 0 Ē 3 Die Id 13 4 5 12 0000 þ Ć R Dle ld B 6 -11-5 7 10 IJ 9 8

3.1.4 Bonding diagram: MT57ADA – rotated die version

3.1.5 Package outline/Mechanical data

REF.		Millimete	rs		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°(ty	p.)		
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.158
G	4.6		5.3	0.181		0.209
L	0.4		1.27	0.016		0.050
М			0.62			0.024
S		8°(max.)				

3.2 Traceability

Wafer fab information for UAF0			
Wafer fab manufacturing location	CATANIA M5		
Wafer diameter	8 inches		
Wafer thickness	375 μm		
Silicon process technology	BCD8AS		
Die finishing back side	CHROMIUM/NICKEL/GOLD		
Die size	1701X1784 μm		
Bond pad metallization layers	AICu		
Passivation	NITRIDE		
Metal levels	4		
Wafer fa	ab information for U343		
Wafer fab manufacturing location	ANG MO KIO		
Wafer diameter	6 inches		
Wafer thickness	375 μm		
Silicon process technology	BCDoffline		
Die finishing back side	CHROMIUM/NICKEL/GOLD		
Die size	1780X1780 μm		
Bond pad metallization layers	AlSiCu		
Passivation	NITRIDE		
Metal levels	1		

Assembly Information		
Assembly plant location	AMKOR ATP1-PHILIPPINES	
Package description	SO16N	
Molding compound	Sumitomo G600	
Wires bonding materials/diameters	Au/1.2 mils	
Die attach material	Ablestik 8290	
Lead solder material	NiPdAu	

4 TESTS RESULTS SUMMARY

4.1 LOTs information

Lot ID #	Revision
1	ABA
2	ACA
3	ACA
4	ACA with new LeadFrame Strip

4.2 Test plan and results summary

Die Ori	ented Tests (lo	t3=ADA–rotated die)						
Test	Method	Conditions	Failure/SS					
			Lot 1 (ABA)	Lot 2 (ACA)	Lot 3 (ADA)	Duration	Note	
HTRB	High Temperature Reverse Bias							
		Tj=150°C,	0/40			1000h		
		VHV=630V, VTPR=20V,VDD=3.3V						
HTOL	High Temperature Operating Life							
	PC before	Tj=150°C VHV=600V, VEOL=4V,VDD=5V, VCC=16V	0/80			1280h		
	PC before	Tj=150°C VHV=600V, VEOL=4V,VDD=5V, VCC=16V			0/77 (*)	1000h		

	Package Oriented Tests (lot3=ADA-rotated die)								
Test	Method	Conditions	, Failure/SS						
			Lot 1	Lot 2	Lot 3	Lot 4	Duration	Note	
PC		Pre-Conditioning: Moisture sensitivity level 3							
		192h 30°C/60% - 3 reflow PBT 260°C	0/260		0/231	0/231			
SWS	Solder Wave Simulation	According Jedec 22-A11	Passed 100		Passed 77				
AC		Autoclave							
	PC before	121°C 2atm	0/110		0/77		168h		
AC		Autoclave							
	PC before	121°C 2atm				0/77	96h		
тс		Temperature Cycling							
	PC before	Temp. range: -65/+150°C	0/110		0/77	0/77	500cy		
HTSL		High Temperature Storage							
	No bias	Tamb=150°C	0/110		0/77		1280h		
HTSL		High Temperature Storage							
	No bias	Tamb=150°C				0/77	1000h		
THB		Temperature Humidity Bias							
	PC before	Ta=85°c/85%R.H, Tj=150°C VHv=118V, VDD=3,3V, VTPR=18V	0/40				1000h		

Test	ical Characterization Method	Conditions		Failure/S		1			
			Lot 1	i i			Note		
			LOUI	LOI Z	LOUS	Duration			
ESD	Electro Static Discharge								
	Human Body Model	+/- 2kV +/- 900V on HV pins		0/3	0/3				
	Charge Device Model	+/- 500V		0/3	0/3				
LU	Latch-Up								
	Over-voltage and Current Injection	Tamb=100°C Jedec78		0/6					

(*) See detailed results on section 4.2.1

5 TESTS DESCRIPTION & DETAILED RESULTS

5.1 Die oriented tests

5.1.1 High Temperature Operating Life

This test is performed like application conditions in order to check electromigration phenomena, gate oxide weakness and other design/manufacturing defects put in evidence by internal power dissipation.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check at 168 and 500hrs @ Ta=25°C
- Final Testing (1000 hr. and 1280hrs) @ Ta=25°C

(*) After 1000h a drift on Fosc_Funz parameter was observed: due to the drift some devices went out of spec. In order to compensate the drift and to avoid out of spec., new trimming target value was defined in agreement with the customer.

On the basis of the above corrective action, we consider concluded the HTOL trial with 0 rej.

5.1.2 High Temperature Reverse Bias

This test is performed to evaluate die problems related with chip stability, layout structure, surface contamination and oxide faults.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check @ 168 and 500hrs @ Ta=25°C
- Final Testing @ 1000hrs @ Ta=25°C

5.2 Package oriented tests

5.2.1 Pre-Conditioning

The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption.

The scope is to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.

5.2.2 High Temperature Storage

The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.

The scope is to investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding

5.2.3 Temperature Humidity Bias

The test is addressed to put in evidence problems of the die-package compatibility related to phenomena activated in wet conditions such as electro-chemical corrosion.

The device is stressed in static configuration approaching some field status like power down. Temperature, Humidity and Bias are applied to the device in the following environmental conditions => $Ta=85^{\circ}C / RH=85\%$. Input pins to Low / High Voltage (alternate) to maximize voltage contrast.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check at 168hrs and 500hrs @ Ta=25°C
- Final Testing (1000 hr.) @ Ta=25°C

5.2.4 Thermal Cycles

The purpose of this test is to evaluate the thermo mechanical behavior under moderate thermal gradient stress. Test flow chart is the following:

- Initial testing @ Ta=25°C.
- Readout @ 200 cycles.
- Final Testing @ 500 cycles @ Ta=25°C.

TEST CONDITIONS:

- Ta= -65°C to +150°C(air)
- 15 min. at temperature extremes
- 1 min. transfer time

5.2.5 Autoclave

The purpose of this test is to point out critical water entry path with consequent corrosion phenomena related to chemical contamination and package hermeticity.

- Test flow chart is the following:
 Initial testing @ Ta=25°C.
 - Initial testing @ Ta=25 C.
 Final Testing (169bra) @ Ta
 - Final Testing (168hrs) @ Ta=25°C.

TEST CONDITIONS:

- P=2.08 atm
- Ta=121°C
- test time= 168 hrs

5.3 Electrical Characterization Tests

5.3.1 Latch-up

This test is intended to verify the presence of bulk parasitic effects inducing latch-up.

The device is submitted to a direct current forced/sinked into the input/output pins. Removing the direct current no change in the supply current must be observed.

Stress applied:

condition	NEG. INJECTION	POS. INJECTION	OVERVOLTAGE	
IN low: OV	-100mA	Inom+100mA	Vcc=16V	
IN high: 3.3V -100mA		Inom+100mA	Vcc=16V	

5.3.2 E.S.D.

This test is performed to verify adequate pin protection to electrostatic discharges. The flow chart is the following:

- Initial testing @ Ta=25°C
- ESD discharging @ Ta=25°C
- Final Testing @ Ta=25°C

TEST CONDITIONS:

0	Human Body Model	ANSI/ESDA/JEDEC STANDARD JES001
		CDF-AEC-Q100-002

• Charge Device Model ANSI/ESD STM 5.3.1 ESDA – JEDEC JESD22-C101 CDF-AEC-Q100-011

Reliability Qualification Report SO14 Leadframe Strip Change in Amkor (From HD to XD) - AMKOR PCN 140501

General Information		
Product Line 0914		
Product From	FBK7*0914AAW	
Package Technology	K7 SO 14 .15 TO JEDEC MS-012	

Locations		
Wafer Fab Location AM6F - Singapore 6"		
Assembly Plant Location	ZY1A SC AMKOR ATP1 - PHILIPPINES	
Testing Plant	ZW1T SC AMKOR ATP3 - PHILIPPINES	
Reliability Assessment	ZW1T SC AMKOR ATP3 - PHILIPPINES (QA RELIABILITY LAB)	

Issued By: Sandra KRIEF

Approved By: Jean-marc BUGNARD

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	Pg : 3
2	TEST GLOSSARY	Pg : 3
3	RELIABILITY EVALUATION OVERVIEW	Pg : 4
	3.1 OBJECTIVES	Pg : 4
	3.2 CONCLUSIONS	Pg : 4
4	DEVICE CHARACTERISTICS	Pg : 5
	4.1 BONDING DIAGRAM	Pg : 5
	4.2 PACKAGE OUTLINE/MECHANICAL DATA	Pg : 6 – 7
	4.3 TRACEABILITY	Pg : 8
5	TEST RESULTS SUMMARY	Pg : 9
	5.1 LOT INFORMATION	Pg : 9
	5.2 TEST PLAN AND RESULTS SUMMARY	Pg : 9
	5.3 SAM ANALYSIS	Pg : 10
	5.4 DPA STATUS	Pg : 10
6	TESTS DESCRIPTION	Pg : 11
	6.1 DIE AND PACKAGE TESTS DESCRIPTION	Pg : 11

1 APPLICABLE AND REFERENCE DOCUMENTS

Document Reference	Short Description
AEC-Q100	Stress test qualification for integrated circuits
SOP 2.6.11	Project management for product development
SOP 2.6.19	Front-end technology platform development & qualification
SOP 2.6.2	Internals change management
SOP 2.6.7	Product maturity level
SOP 2.6.9	Package and process maturity management in Back End
SOP 2.7.5	Automotive products definition and status
0061692	Reliability tests and criteria for product qualification
8160601	Internal reliability evaluation report template
8161393	General specification for product development

2 TEST GLOSSARY

TEST NAME	DESCRIPTION	
PC (JL1)	Preconditioning (Solder Simulation)	
тс	Temperature Cycling	
AC or PPT	Autoclave or Pressure Pot Test	

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

The aim of this report is to present the results of the reliability assessment evaluation performed on TS914IDT\$BAF (FBK7*0914AAW) – the Lead- frame strip changed in Assembly Plant AMKOR ATP1 – PHILIPPINES (from HD to XD), impact on package K7 SO 14 .15 TO JEDEC MS-012 (with reference to AMKOR PCN 140501).

The main purpose is to qualify XD Lead-frame as a new strip for K7 SO 14 .15 TO JEDEC MS-012.

TS914ID\$BAF is processed in CMOS $3\mu m,$ C1PAHV-2 / 2 poly (14/1m) , diffused in AM6F - Singapore 6" and assembled in AMKOR ATP1 – PHILIPPINES.

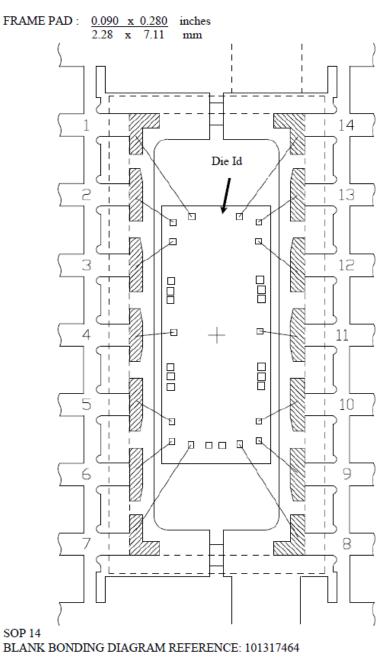
For the reliability assessment evaluation the following package oriented test were carried out:

Preconditioning JL1 (3X Reflow) Temperature Cycling (TC) Autoclave / Pressure Pot Test (AC / PPT)

3.2 Conclusions

All reliability tests have been completed with positive results (no any electrical failure that can be link to new Lead-frame strip changed from HD to XD). Package oriented test and destructive physical analysis - SAM also have not put in evidence any criticality to package robustness.

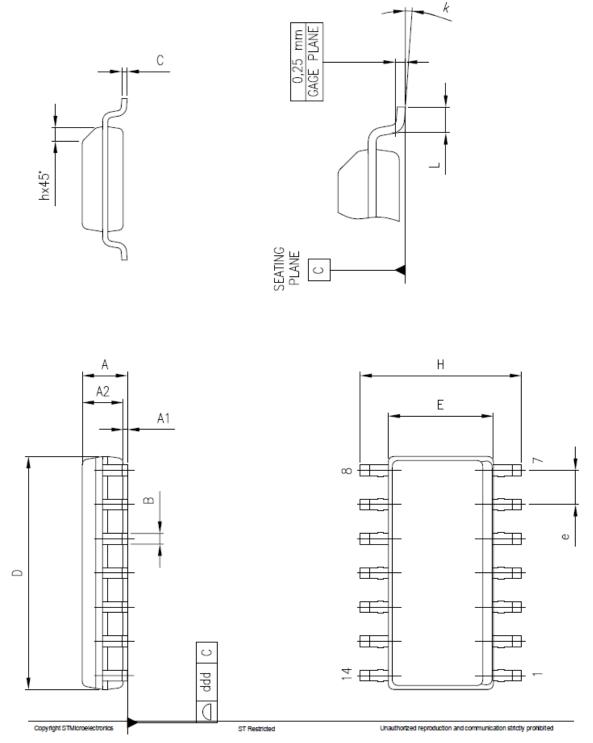
Report Ref: GNB_REL (0914_PCN 140501) Date: 12th October 2016



4 DEVICE CHARACTERISTICS

4.1 Bond Diagram

BONDING DIAGRAM FOR LINE: 0914


PACKAGE: K7

Report Ref: GNB_REL (0914_PCN 140501) Date: 12th October 2016 Page: 5 / 11

4.2 Package Outline / Mechanical Data

Report Ref: GNB_REL (0914_PCN 140501)

Page: 6 / 11

Date: 12th October 2016

	DIMENSIONS						
		DATABOOK (mm)			DRAWING (mm)		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	NOTES
Α	1.35		1.75			1.75	
A1	0.10		0.25	0.10	0.15	0.20	
A2	1.10		1.65	1.48	1.52	1.60	
В	0.33		0.51	0.35	0.40	0.455	
С	0.19		0.25	0.19	0.20	0.238	
D	8.55		8.75	8.60	8.65	8.70	(1)
E	3.80		4.00	3.80	3.90	4.00	
е		1.27			1.27		
Н	5.80		6.20	5.90	6.00	6.10	
h	0.25		0.50	0.425		0.50	
L	0.40		1.27	0.50	0.635	0.685	
k	0		8	2	4	8	DEGREES
ddd			0.10			0.04	

NOTES:

 Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

(2) - Drawing dimensions include Single and Matrix versions.

Report Ref: GNB_REL (0914_PCN 140501) Date: 12^{th} October 2016

4.3 Traceability

Wafer Fab Information			
Wafer fab manufacturing location	AM6F - Singapore 6"		
Wafer diameter	6 inch		
Wafer thickness (X0914AAW)	280+/-20 UM		
Silicon process technology	CMOS 3µm - C1PAHV-2		
Die finishing back side	RAW SILICON		
Die finishing front side	P-VAPOX/NITRIDE		
Die size	4650 x 1960μm		

Assembly Information		
Assembly plant location	ZY1A SC AMKOR ATP1 - PHILIPPINES 9998	
Package description	K7 SO 14 .15 TO JEDEC MS-012	
Molding compound	SUMITOMO G600	
Wire bonding materials/diameters	Au 1.0 Mils	
Die attach material	ABLESTIK 8290	
Lead frame material	LF SO E14L 90x280 XD SID 101385254 C194	

Final Testing Information			
Electrical testing location ST SINGAPORE EWS, SGEWS 0899			
Tester	ASL1K		

5. TEST RESULTS SUMMARY

5.1 Lot Information

Lot #	Diffusion Lot	Device name	AMKOR ID	ATF#
1	W532T59B	TS914ID\$BAF	2862566	A3S1625LG0315

5.2 Test Plan and Results Summary (Electrical Test)

Reliability Test Status							
No	Test Name	Prec	Condition/ Method	Steps	Fails/SS	Notes	
					Lot 1		
1	PC (JL1)		Bake 24hrs @ 125°C Soak 168hrs @ 85°C/85%RH 3 Reflow 260°C Profile = J-STD-020D	Final	0 / 200	Pass	
2	тс	Yes	Test Conditions = -65°C / +150°C	500сус	0 / 77	Pass	
3	AC	Yes	Test Conditions = Ta = 121°C / 2 ATM	96hrs	0 / 77	Pass	

NOTES

All units electrically tested good (all Pass) after each reliability readout. No any electrical failure found that can be link to the weakness of the assembly process or due the Lead-Frame Strip change from HD to XD in Amkor Philippines (ATP1).

5.3 Test Plan and Results Summary (SAM Analysis)

	Reliability Test Status							
No	Test Name	Prec	Condition/ Method	Steps	Fails/SS	Notes		
110					Lot 1			
1	PC (JL1)		Bake 24hrs @ 125°C Soak 168hrs @ 85°C/85%RH 3 Reflow 260°C Profile = J-STD-020D	Final	0 / 44	No Delam		
2	тс	Yes	Test Conditions = -65°C / +150°C	500сус	0 / 22	No Delam		
3	AC	Yes	Test Conditions = Ta = 121°C / 2 ATM	96hrs	0/22	No Delam		

NOTES

SAM analysis did not reveal any delam on Die Attach Material (DAM) & Die / Molding Compound (Die Top) on sampling basis 22 pcs for each reliability test The Lead and diepaddle delam (die-pad front side / molding compound) after Reliability (TC Trial) is an intrinsic problem of this package and not related to the change being qualified.

All units with or without Lead delam passed the electrical testing after TC500 and no lifted weld or broken weld during pull test after TC500.

6. TESTS DESCRIPTION

6.1 Package tests description

TEST NAME	DESCRIPTION	PURPOSE	
PC (JL1) Preconditioning MSL1 (solder simulation)	The device is submitted to a typical temperature profile used for surface mounting after storage in a control moisture absorption.	As stand-alone test: to investigate the level of moisture sensitivity. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop-corn" effect and delamination.	
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are link to metal displacement, dielectric cracking, molding compound delamination, wire bonds failure, die crack.	
AC or PPT Autoclave / Pressure Pot Test	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity. To point out critical water entry paths with consequent electrochemical and galvanic corrosion.	

Page: 11 / 11

Report Ref: GNB_REL (0914_PCN 140501) Date: 12^{th} October 2016