

Reliability Evaluation Report

On

M02 VIPOWER Transfer from CT6 to AMK6

TV: VN330SP-E

General Information		Locations			
Product Line	VN3301	Wafer fab	Singapore 6		
Product Description	Quad high-side smart power solid state-relay				
P/N	VN330SP-E				
Product Group	AMG	Assembly plant	MUAR B/E		
Product division	IND. & POWER CONV.				
Package	PowerSO-10				
Silicon Process technology	VIP - M02	Reliability Lab	AMG Catania Reliability Lab		
		Reliability assessment	Pass		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Oct-2016	6	Vito Gisabella Alfio Riciputo	Giovanni Presti	

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL-6088-246-W-16

TABLE OF CONTENTS

APP	LICABLE AND REFERENCE DOCUMENTS	3
GLO	SSARY	3
RELI	ABILITY EVALUATION OVERVIEW	3
3.1	OBJECTIVES	3
3.2	CONCLUSION	4
DEV	ICE CHARACTERISTICS	4
4.1	DEVICE DESCRIPTION	4
4.2	CONSTRUCTION NOTE	4
TES	TS RESULTS SUMMARY	5
5.1	TEST VEHICLE	5
5.2	TEST PLAN AND RESULTS SUMMARY	5
ANN	EXES	6
6.1	TESTS DESCRIPTION	6
	APP GLO REL 3.1 3.2 DEV 4.1 4.2 TES 5.1 5.2 ANN 6.1	APPLICABLE AND REFERENCE DOCUMENTS GLOSSARY RELIABILITY EVALUATION OVERVIEW 3.1 OBJECTIVES 3.2 CONCLUSION DEVICE CHARACTERISTICS 4.1 DEVICE DESCRIPTION 4.2 CONSTRUCTION NOTE TESTS RESULTS SUMMARY 5.1 TEST VEHICLE 5.2 TEST PLAN AND RESULTS SUMMARY. ANNEXES 6.1 TESTS DESCRIPTION

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

The VN330SP-E is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four indipendent resistive or inductive loads, with one side connected to ground.

3.1 Objectives

M02 VIPOWER transfer from CT6 to Singapore 6.

The Reliability verification will be performed by TVs.

The present report is related to the 1st Lot of TV VN33 line.

3.1.1 Evaluation Plan

The evaluation plan will includes the following TVs:

Test Vehicle (line)	Diffusion Lot	Assy Lot	Package	FE Tech	Comment
VN33	Singapore Ang Mo Kio	MUAR B/E		VIP M02	1 st Lot
VN34	Singapore Ang Mo Kio	MUAR B/E	PowerSO-10	VIP M02	2 nd Lot
VN33	Singapore Ang Mo Kio	MUAR B/E		VIP M02	3 rd Lot

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

4 DEVICE CHARACTERISTICS

4.1 Device description

The VN330SP-E is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four indipendent resistive or inductive loads, with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shut-down protects the chip from overtemperature and short circuit. The open drain diagnostic output indicates overtemperature conditions.

4.2 Construction note

	VN330SP-E
Wafer/Die fab. information	
Wafer fab manufacturing location	Singapore 6 Ang Mo Kio
Technology	VIP M02
Die finishing back side	Ti/NiV/Au
Die size	5400 x 4500 micron
Passivation type	SiN (nitride)
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Ang Mo Kio EWS
Tester	QT200
Assembly information	
Assembly site	MUAR
Package description	PowerSO-10
Molding compound	Ероху
Frame material	FRAME PSO-10 4riv Flo SpAg
Die attach material	PREFORM
Wires bonding materials/diameters	WIRE Au D1.3
Final testing information	
Testing location	MUAR B/E
Tester	QT200

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot	Technical Code	Package	Comments
LOT # 1	AMIY*VN33DY6	PowerSO-10	

5.2 Test plan and results summary

V	VN330SP-E									
Test	РС	Std ref.	Conditions (*)	Failure/SS	Note					
Die Oriented Tests										
					168 H	0/45				
HTS	Ν	Δ-103	Ta = 150°C		500 H	0/45				
		77 100			1000 H	0/45				
		JESD22	Ta = 125°C		168 H	0/77				
HIOL	N	A-108	Vcc1=+28V Vcc2=+5V		500 H	0/77				
Daakaga	Orio	nted Tests			1000 H	0/77				
гаскауе	One	illeu lesis	Drving 24 H @ 125°C							
PC		JESD22 A-113	Store 40 H @ Ta=60°C Rh=60% Oven Reflow @ Tpeak=250°C 3 times		Final	Pass	Go no go			
AC Y JESD22 A-102	JESD22	ESD22 Pa=2Atm / Ta=121°C		96H	0/25					
	A-102			168 H	0/25	Eng. evaluation				
		Y JESD22 A-104			100 cy	0/25				
тс	Υ		Ta = -65°C to 150°C		200 cy	0/25				
				500 cy	0/25					
		150500	T 0520 DU 0524		168 H	0/25				
THB	Y	Y JESD22 A-101	Ta = 85°C, RH = 85% Vcc1=+24V		500 H	0/25				
					1000 H	0/25				
(*) all sampl	es ha	ve been assemble	d on dedicated PCB							
Other Te	sts	1								
		ANSI/ESDA/JED EC JS001-2014	НВМ	3	+/- 2000V	0/3				
ESD	N A E	N	N	N	ANSI/ESDA/JED	CDM	3	+/-500V All pins	0/3	
		EC JS002-2014 CD	CDM	3	+/-750V Corner Pins	0/3				
		EIA/JESD78E	LU	6	+/-100mA	0/6				

General Purpose Analog & RF Division

Power Management

Quality and Reliability

6 ANNEXES

6.1 <u>Tests Description</u>

Test name	Description	Purpose	
Die Oriented			
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.	
HTOL High Temperature Operative Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults	
Package Oriented			
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.	
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity	
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die- package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die- attach layer degradation.	
тнв	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.	
Other			
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM : Human Body Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.	
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed	To verify the presence of bulk parasitic effect inducing latch-up.	

Reliability Evaluation Report

On M02 VIPOWER Transfer from CT6 to AMK6

TV: VN340SP-E

General Information			Locations		
Product Line	VN3401		Wafer fab	Singapore Ang Mo Kio	
Product Description	Quad high-side smart power solid state-relay				
P/N	VN340SP-E				
Product Group	AMG		Assembly plant	MUAR	
Product division	IND. & POWER CONV.				
Package	PowerSO-10		Reliability Lab	Catania Reliability Lab	
Silicon Process technology	VIP-M02		·	·	
			Reliability assessment	Pass	

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	Oct-2016	6	Vito Gisabella Alfio Riciputo	Giovanni Presti	

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

AMG (Analog & MEMS Group)

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL-6088-W-248-16

TABLE OF CONTENTS

1	APP	LICABLE AND REFERENCE DOCUMENTS	3
2	GLO	SSARY	3
3	RELI	ABILITY EVALUATION OVERVIEW	3
	3.1	OBJECTIVES	3
	3.2	EVALUATION PLAN	3
	3.3	CONCLUSION	3
4	DEV	ICE CHARACTERISTICS	4
	4.1	DEVICE DESCRIPTION	4
	4.2	CONSTRUCTION NOTE	4
5	TEST	TS RESULTS SUMMARY	5
	5.1	Test vehicle	5
	5.2	TEST PLAN AND RESULTS SUMMARY	5
	5.3	TESTS DESCRIPTION	6

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

The VN340SP-E is a monolithic device developed using ST VIPower™ technology, intended to drive four independent resistive or inductive loads with one side connected to ground.

3.1 Objectives

Tranfer M02 VIPOWER from CT6 to Singapore Ang Mo Kio.

The Reliability verification will be performed by TVs.

The present report is related to the 2nd Lot of TV VN34 line.

3.2 Evaluation Plan

The evaluation plan will includes the following TVs:

Test Vehicle (line)	Diffusion Lot	Assy Lot	Package	FE Tech	Comment
VN33	Singapore Ang Mo Kio	MUAR B/E		VIP M02	1 st Lot
VN34	Singapore Ang Mo Kio	MUAR B/E	PowerSO-10	VIP M02	2 nd Lot
VN33	Singapore Ang Mo Kio	MUAR B/E		VIP M02	3 rd Lot

3.3 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

.

4 DEVICE CHARACTERISTICS

4.1 Device description

The VN340SP-E is a monolithic device developed using ST VIPower[™] technology, intended to drive four independent resistive or inductive loads with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shutdown protects the chip from overtemperature and short-circuit. The open drain diagnostic output indicates overtemperature conditions. Each I/O is pulled down when the overtemperature condition of the relative channel is verified.

4.2 Construction note

	VN340SP-E			
Wafer/Die fab. information				
Wafer fab manufacturing location	SINGAPORE Ang Mo Kio			
Technology	VIP M02			
Die finishing back side	Ti/NiV/Au			
Die size	5070 x 4390 micron			
Passivation type	SiN (nitride)			
Wafer Testing (EWS) information				
Electrical testing manufacturing location	Ang Mo Kio EWS			
Tester	QT200			
Assembly information				
Assembly site	MUAR B/E			
Package description	PowerSO-10			
Molding compound	Ероху			
Frame material	FRAME PSO-10 4riv Flo SpAg			
Die attach material	PREFORM			
Wires bonding materials/diameters	WIRE Au D1.3			
Final testing information				
Testing location	MUAR B/E			
Tester	QT200			

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot	Technical Code	Package	Comments
Lot #1	AMIY*VN34EY6	PowerSO-10	

5.2 Test plan and results summary

VN340SP-E							
Test	PC	Std ref.	Conditions	SS	Steps	Failure/SS	• • ·
							Note
Die Uriented Tests							
		JESD22	T (5000		168 H	0/45	
HIS	N	N A-103	$1a = 150^{\circ}C$		500 H	0/45	
					1000 H	0/45	
штој	N	JESD22	Ta = 125°C			0/77	
HIUL	IN	A-108	Vcc1=+28V Vcc2=+5V		1000 H	0/77	
			Package Oriented	Toete		0/77	
			Drving 24 H @ 125°C	10313			
PC		JESD22	Store 40 H @ Ta=60°C Rh=60%		Final	Pass	Gonodo
10		A-113	Oven Reflow @ Tpeak=250°C 3 times		1 mai	1 400	Cono go
					0.011	0/05	
10	v	JESD22	Do 24tm / To 121%C		96H	0/25	
AC	Y	A-102	Pa=2Atm / Ta=121°C	16011	0/25	Eng. ovaluation	
						0/25	Elig. evaluation
		, JESD22 A-104	Ta = -65°C to 150°C		100 cy	0/25	
тс	Υ				200 cy	0/25	
					500 cy	0/25	
					168 H	0/25	
THB	Υ	Y JESD22 A-101	Ta = 85°C, RH = 85% Vcc1=+24V		500 H	0/25	
					1000 H	0/25	
(*) all sam	nples	have been ass	embled on dedicated PCB				
			Other Tests				
		[
		ANSI/ESDA/JEDE C JS001-2014	HBM	3	+/- 2000V	0/3	
		N ANSI/ESDA/JEDE C JS002-2014	CDM	3	+/-500V All	0/3	
ESD	Ν			•	pins	0,0	
			CDM	3	+/-750V Corner Pins	0/3	
		EIA/JESD78E	LU	6	+/-100mA	0/6	

5.3 <u>Tests Description</u>

Test name	Description	Purpose					
Die Oriented	Die Oriented						
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.					
HTOL High Temperature Operative Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults					
Package Oriented							
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.					
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.					
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die- package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die- attach layer degradation.					
тнв	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.					
Other							
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM: Human Body Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.					
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed	To verify the presence of bulk parasitic effect inducing latch-up.					

Public Products List

Publict Products are off the shelf products. They are not dedicated to specific customers, they are available through ST Sales team, or Distributors, and visible on ST.com

PCN Title : Additional wafer fab in ST Ang Mo Kio (Singapore) for VIPOWER M02 products *PCN Reference :* AMG/17/10123

Subject : Public Products List

Dear Customer,

Please find below the Standard Public Products List impacted by the change.

VN340SP-33-E	VN340SP-E	VN540SP-E
VN540SPTR-E	VN330SP-E	VN340SPTR-33-E
VN540-E	VN340SPTR-E	VN330SPTR-E

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved