

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

Reliability Report

New Product Qualification

HBIP40 Technology Introduction for the 5V and 3.3V Output Voltage versions of the L78L Product Family

Test Vehicles:

L78L05CD13TR L78L05CD13TR L78L33ABUTR

General	Information		Locations
Product Line	LA0501 LA0501 LA3301	Wafer fab	Singapore Ang Mo Kio
Product Description	5V 100mA Pos. Reg 5V 100mA Pos. Reg. Adjustable voltage regulator	Assembly plant	SO 08 Shenzhen B/E SOT 89 NANTONG FUJITSU
P/N	L78L05CD13TR L78L05CD13TR L78L33ABUTR	Reliability Lab	ADG Catania Reliability Lab
Product Group	AMG (Analog & MEMS Group)		
Product division	General Purpose Analog & RF Division Power Management	Reliability assessment	Pass
Package	SO 08, Cu wire SOT 89, Au wire		
Silicon Process technology	Bip HF - HBIP40V		

DOCUMENT INFORMATION

[Version	Date	Pages	Prepared by	Approved by	Comment
	1.0	March 2016	7	Alfio Rao	Giovanni Presti	Final report

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	. 3
2	GLOSSARY	.3
	RELIABILITY EVALUATION OVERVIEW	.3
	3.1 OBJECTIVES	.3
	3.2 CONCLUSION	.3
4	DEVICE CHARACTERISTICS	.4
	4.1 DEVICE DESCRIPTION	.4
	4.2 CONSTRUCTION NOTE	.5
5	TESTS RESULTS SUMMARY	
	5.1 TEST VEHICLE	.6
	5.2 TEST PLAN AND RESULTS SUMMARY	.6
6	TESTS DESCRIPTION	.7

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

Linear Voltage Regulators: HBIP40 Technology Introduction for the 5V and 3.3V Output Voltage versions of the L78L Product Family

Test Vehicles:

•	L78L05CD13TR	SO 08 Cu Wire	1 st diff. Lot
•	L78L05CD13TR	SO 08 Cu Wire	2 nd diff. Lot
•	L78L33ABUTR	SOT 89 Au Wire	3 rd diff. Lot

HBIP40 is a technology already qualified by STM

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

AMG (Analog & MEMS Group) General Purpose Analog & RF Division Power Management

Quality and Reliability

REL. 6088-058-W-2016

4 DEVICE CHARACTERISTICS

4.1 Device description

The L78L series of three-terminal positive regulators employ internal current limiting and thermal shutdown, making them essentially indestructible. If adequate heat-sink is provided, they can deliver up to 100 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local or oncard regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high-current voltage regulators. The L78L series used as Zener diode/resistor combination replacement, offers e improvement along with lower quiescent current and lower noise.

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

4.2 Construction note

	L78L05CD13TR (1 st Lot - HBIP40)	L78L05CD13TR (2 nd Lot - HBIP40)	L78L33ABUTR (3 nd Lot - HBIP40)			
Wafer/Die fab. information						
Wafer fab manufacturing location	Singapore Ang Mo Kio					
Technology		Bip HF				
Process family		HBIP40V				
Die finishing back side		LAPPED SILICON				
Die size		766 x 706 micron				
Passivation type		P-VAPOX/NITRIDE				
Wafer Testing (EWS) information						
Electrical testing manufacturing location		Ang Mo Kio EWS				
Tester		ETS 300				
Tester Program	LA05QAE01 LA05QAE01 LA33QAE01					
Assembly information						
Assembly site	Shenzhen B/E	Shenzhen B/E	NANTONG FUJITSU			
Package description	SO 08	SO 08	SOT 89			
Molding compound	Epoxy	Epoxy	Epoxy			
Frame material	SO 8L 94x125 SHD OpB 4+2+2 4Layers	SO 8L 94x125 SHD OpB 4+2+2 4Layers	SOT89- 3A/75*70mil			
Die attach material	GLUE	GLUE	GLUE			
Wires bonding materials/diameters	1.0 mils - Cu 1.0 mils - Cu 1,0 mils					
Final testing information						
Testing location	ST Shenzhen ST Shenzhen B/E		NANTONG FUJITSU			
Tester	ASL1000 / qt200	ASL1000	ASL1000			
Test Program	L78L05C.prg / LAXXFC05.CTS					

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Technical Code	Package	Product Line	Comments
1	ZPO7*LA05BA6	SO 08	LA0501	HBIP40V
2	ZPO7*LA05BA6	SO 08	LA0501	HBIP40V
3	1F39*LA33BA6	SOT 89	LA3301	HBIP40V

5.2 Test plan and results summary

						F	ailure/S	S	
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 SO8	Lot 2 SO8	Lot 3 Sot89	Note
Die Ori	Die Oriented Tests								
		JESD22			168 h	0/77	0/77		
HTOL	Ν	A-108	Ta = 125°C Vcc= +30V		500 h	0/77	0/77		
					1000 h	0/77	0/77	0/15	
		JESD22	T (5000		168 h	0/45	0/45	0/45	
HTSL	Ν	A-103	Ta = 150°C		500 h	0/45	0/45	0/45	
					1000 h	0/45	0/45 0/45	0/45	
HTSL	Ν	JESD22	Ta = 175°C		168 h 500 h	0/45 0/45	0/45		Engineering evaluation
I I SL	IN	A-103	Ta = 175 C		1000 h	0/45	0/45		on Cu wire
Packag		riented Tests			1000 11	0/45	0/45		
i acray			Drying 24 H @ 125°C						
PC		JESD22	Store 168 H @ Ta=85°C Rh=85%		Final	Pass		Pass	
		A-113	Over Reflow @ Tpeak=260°C 3 times						
AC	Y	JESD22	Pa= 2Atm / Ta=121°C		168 h	0/77	0/77	0/77	
		A-102			100 01	0/77	0/77	0/77	
тс	Y	, JESD22	Ta = -65°C to 150°C		100 cy 200 cy	0/77 0/77	0/77 0/77	0/77 0/77	
	T	A-104	1a = -65 C 10 150 C		200 cy	0/77	0/77	0/77	
					168 h	0/77	0/77	0/11	
TUD	Y	JESD22	Ta = 85°C, RH = 85%,						
THB	ř	A-101	A-101 Vcc1= +24V		500 h	0/77	0/77		
Other T	to				1000 h	0/77	0/77		
Other 1	ests			[[[
ESD		ANSI/ESDA/J EDEC JS001	HBM +/- 2000V	3	2KV	Pass			
		ANSI/ESD S5.3.1	CDM 500V	3	500V	Pass			

General Purpose Analog & RF Division

Power Management

Quality and Reliability

REL. 6088-058-W-2016

6 TESTS DESCRIPTION

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	simulates the devices' operating condition in an
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
PC Preconditioning		As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die-
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other Test		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model HBM: Human Body Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.