

PRODUCT INFORMATION LETTER

PIL MMS-MIC/12/7220 Notification Date 04/13/2012

STM32F20x, STM32F21x Low Speed Oscillator consumption decrease

PIL MMS-MIC/12/7220 - Notification Date 04/13/2012

Production process involved	Product design change
Production process details	Generic
Reason for change	Decrease Low Speed Oscillator consumption for low power applications
Description	On revX devices, the power consumption of the Low Speed Oscillator (32.678KHz Real Time Clock) has been reduced from 3 A to 1 A at typical conditions (VDD=3.3Volts and 25 C), thus providing better current consumption in VBAT mode while keeping the Low Speed Oscillator and Real Time Clock active for low power applications.
Forecasted date of implementation	05-May-2012
Forecasted date of samples for customer	06-Apr-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	06-Apr-2012
Description of qualification program	See Attached Qualification Plan
Involved ST facilities	ST Rousset diffusion plant

Name	Function
Colonna, Daniel	Division Marketing Manager
Narche, Pascal	Division Q.A. Manager
Delannoy, Alain	Process Owner

DOCUMENT APPROVAL

PRODUCT INFORMATION LETTER

STM32F20x, STM32F21x Low Speed Oscillator consumption decrease

MMS - Microcontrollers Division (MCD)

Dear Customer,

We wish to inform you about an improvement related to the Low Speed Oscillator on STM32F20x and STM32F21x devices.

What is the change?

On revX devices, the power consumption of the Low Speed Oscillator (32.678KHz Real Time Clock) has been reduced from 3μ A to 1μ A at typical conditions (VDD=3.3Volts and 25°C), thus providing better current consumption in VBAT mode while keeping the Low Speed Oscillator and Real Time Clock active for low power applications.

Why?

The power consumption of the Low Speed Oscillator of the Real Time Clock is reduced by factor of 3 at typical conditions, which is perfect for low power applications.

When?

The design improvement will be implemented week 18.

How will the change be qualified?

This change is already qualified using the standard STMicroelectronics Corporate Procedures for Quality and Reliability, in full compliancy with the JESD-47 international standard.

Qualification plan

See Qualification plan attached at the end of this document.

What is the impact of the change?

ST decreased the power consumption on VBAT from 3μ A to 1μ A (25°C and 3.3volts), while keeping the same functionality for the Low Speed Oscillator in terms of oscillations and all other features.

BEFORE:

Table 21. Typical and maximum current consumptions in V_{BAT} mode

Symbol			Тур			
	Parameter	Conditions	T _A = 25 °C			
			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	
I _{DD_VBAT}	Backup domain supply current	Backup SRAM ON, RTC ON	3.2	3.4	3.7	
		Backup SRAM OFF, low-speed oscillator and RTC ON	2.6	2.7	3.0	
		Backup SRAM ON, RTC OFF	0.7	0.7	0.8	
		Backup SRAM OFF, RTC OFF	0.1	0.1	0.1	

NOW:

				-		
Symbol	Parameter		Тур			
		Conditions	T _A = 25 °C			
			V _{BAT} = 1.8 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	
I _{DD_VBAT}	Backup domain supply current	Backup SRAM ON, low-speed oscillator and RTC ON	1.29	1.42	1.68	
		Backup SRAM OFF, low-speed oscillator and RTC ON	0.62	0.73	0.96	
		Backup SRAM ON, RTC OFF	0.79	0.81	0.86	
		Backup SRAM OFF, RTC OFF	0.10	0.10	0.10	

How can the change be seen?

Traceability of the change is ensured by ST internal tools.

• The new revision letter of the die is changed from "Y" to "X". The die revision is marked onto the package of the part.

• The Finish good identification is changed from 32F2xxxx\$x4 to 32F2xxxx\$x5. The Finish good identification is printed onto the labels of the inner box and outer box.

We remain available for any complementary information you may need concerning this change.

With our sincere regards.

Michel Buffa Microcontroller Division General Manager

MMS/MCD RELIABILITY EVALUATION REPORT

RERMCD1023

Product Evaluation: STM32F20x / 1M

CMOSM10 ST Rousset

Product / Process information					
Commercial product	STM32F2x				
Product line	411X66				
Product description	STM32F 1Mbytes FLASH				
Production Mask Set revision	Cut 2.2				
Product Division	Microcontrollers Division (MCD)				
Silicon process technology	CMOSM10				
Wafer fabrication location	R8", ST Rousset, France				
Electrical Wafer Sort test plant location	R8", ST Rousset, France				

Package information						
Package	Final Test plant location					
LQFP 176 (24x24)	ASE (TAIWAN)	ST MUAR, (MALAYSIA)				
LQFP 144 (20x20)	AMKOR ATK1 (KOREA)	AMKOR ATK3 (KOREA)				
LQFP 100 (14x14)	AMKOR ATK1 (KOREA)	AMKOR ATK3 (KOREA)				
LQFP 64 (10x10)	STATS ChipPAC (SHANGHAI)	STATS ChipPAC (SHANGHAI)				
UFBGA 176 (10x10)	AMKOR ATK4 (KOREA)	AMKOR ATK3 (KOREA)				
WLCSP66	STATS ChipPAC Singapore	STATS ChipPAC Singapore				

Reliability assessment: PASS

Approval List						
Function Name Date						
Div Q&R Responsible	Frederic BRAVARD	05-April-2012				
Div Quality Manager	Pascal NARCHE	05-April-2012				

Contents

1	RELIABILITY EVALUATION OVERVIEW	3
	1.1 OBJECTIVES	3
	1.1 OBJECTIVES 1.2 CONCLUSION	3
2	RELIABILITY TEST VEHICLE(S) CHARACTERISTICS	4
	RELIABILITY TEST VEHICLE(S) CHARACTERISTICS. 2.1 RELIABILITY TEST VEHICLE(S) DESCRIPTION.	4
	2.2 RELIABILITY TEST VEHICLE(S) TRACEABILITY	5
	2.2.1 Product vehicle used for die reliability evaluation	5
	2.2.2 Product vehicle used for package reliability evaluation	
3	RELIABILITY EVALUATION PLAN / RESULTS SUMMARY	6
	3.1 RELIABILITY EVALUATION : RESULTS SUMMARY	6
	3.1.1 Die related tests:	.7
	3.1.1 Die related tests: 3.1.2 Packages related tests:	.8
	-	
4	APPLICABLE AND REFERENCE DOCUMENTS	1
5	GLOSSARY	1
6	REVISION HISTORY	1

1 <u>RELIABILITY EVALUATION OVERVIEW</u>

1.1 Objectives

The purpose of this document is to assess the reliability of the product STM32F20x diffused in STM Rousset, France, and assembled in the following package:

- For LQFP176 24x24 in ASE, Taiwan
- For LQFP144 20x20 in AMKOR ATK1, Korea
- For LQFP100 14x14 in AMKOR ATK1, Korea
- For LQFP64 10x10 in STATS ChipPAC Shanghaï, China
- For WLCSP66 in STATS ChipPAC Singapore
- For UFBGA176 10x10 in AMKOR ATK4, Korea.

1.2 Conclusion

All reliability tests have been completed with positive results. Neither functional nor parametric rejects were detected at final electrical testing.

According to the reliability tests results, the qualification is granted for the STM32F20x F/G and its subsets, diffused in STM Rousset R8" – France (die 411X) and assembled in the above listed packages.

The intermediate results of WLCSP66 reliability trials are enough to grant production maturity. The report will be updated when the full trial will be completed.

2 RELIABILITY TEST VEHICLE(S) CHARACTERISTICS

2.1 <u>Reliability Test vehicle(s) description</u>

STM32F20x is processed in CMOSM10 (90nm) diffused in ROUSSET 8". The test vehicle used for the die reliability evaluation is assembled in LQFP176 24x24 package. The reliability evaluation has been also performed for the following packages: LQFP176 24x24, LQFP144 20x20, LQFP100 14x14 and LQFP64 10x10.

UFBGA176 10x10 WLCSP66

The STM32F20x family is based on the high-performance ARM® Cortex[™]-M3 32-bit RISC core operating at a frequency of up to 120 MHz. The family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

The devices also feature an adaptive real-time memory accelerator (ART Accelerator[™]) which allows to achieve a performance equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 120 MHz. This performance has been validated using the CoreMark benchmark.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. A true number random generator (RNG). They also feature standard and advanced communication interfaces. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), and a camera interface for CMOS sensors.

The devices also feature standard peripherals:

- Up to three I2Cs
- Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external PLL to allow synchronization.
- 4 USARTs and 2 UARTs
- An USB OTG full-speed and a USB OTG full-speed with high-speed capability (with the ULPI)

2.2 <u>Reliability Test vehicle(s) Traceability</u>

2.2.1 Product vehicle used for die reliability evaluation

RER lot ID	Lot 1	Lot 2	Lot 3	Lot 4	Lot 11		
Product	Cut 1.1	Cut 1.1	Cut 2.0	Cut 2.1	Cut 2.2		
Lab Location		ST RO	USSET		ST ROUSSET		
Wafer fab.		ROUSSET 8"					
Silicon Process Technology		CMOSM10 (90nm)					
EWS location		ST ROUSSET					
Assembly plant location		AMKOR ATK4					
Package description		LQFP176 24x24					

2.2.2 Product vehicle used for package reliability evaluation

RER lot ID	Lot 5	Lot 6	Lot 7	Lot 8	Lot 9	Lot 8	Lot 9	Lot 10
Product	Cut 2.0	Cut 2.0	Cut 2.0	Cut 2.0	Cut 2.0	Cut 1.1	Cut 1.1	Cut 2.0
Lab Location		ST ROUSSET						
Wafer fab.				ROUS	SET 8"			
Silicon Process Technology	CMOSM10 (90nm)							
EWS location		ST ROUSSET						
Assembly plant location						STATS ChipPAC Shanghaï		
Package description	WLCSP66 LQFP144 LQFP100 20x20 14x14						LQFP64 10x10	

3 RELIABILITY EVALUATION PLAN / RESULTS SUMMARY

3.1 <u>Reliability evaluation : results summary</u>

The STM32F20x is a new platform for the 32 bits microcontroller processed in the CMOSM10 (90nm) with embedded Flash memory. This technology is qualified in ST Rousset.

For packages used on STM32F20x, the following rules have been applied:

- Full similarity rules: LQFP144, LQFP100 and LQFP64
- Full qualification package: LQFP176, UFBGA176, WLCSP66

Packages qualification references:

Package	Qualification Report	Assembly Plant location	Final Test plant location	
LQFP176 24x24	RERMCD 1023	ASE TAWAIN	ST MUAR	
LQFP144 20x20	RERMCD 1018	AMKOR ATK1	AMKOR ATK3	
LQFP100 14x14	UFBGA176	AMKOR ATK1	AMKOR ATK3	
LQFP64 10x10	QA 08-005	SCC	SCC	
UFBGA176	RERMCD 1108	AMKOR ATK4	AMKOR ATK3	
WLCSP66	RERMCD 1023	StatsChippac Singapore	StatsChippac Singapore	

Based on these data, the following qualification strategy has been defined:

• Minimum of 3 diffusion lots (-40° / +105°)

The reliability test plan and result summary are presented as follows:

- In <u>Table 1</u> for Die oriented tests
- In *Table 2* for LQFP176 package oriented tests
- In *Table 3* for LQFP144 package oriented tests
- In *Table 4* for LQFP100 package oriented tests
- In *<u>Table 5</u>* for LQFP64 package oriented tests
- In *Table 6* for WLCSP66 package oriented tests

3.1.1 Die related tests:

The die oriented test results are summarized in table 1.

		Die Related T	ests - sho	ort description			F	Results		
Description	Test/Method	Conditions	Sample Size	Criteria	Read out / Duration	Lot 1	Lot 2	Lot 3	Lot 4	Lot 11
						Cut 1.1	Cut 1.1	Cut 2.0	Cut2.1	Cut2.2
Electrostatic	discharge - Hu	man Body Mod	lel		1	_		1	-	
ESD HBM	JESD22-A114	1500 Ω, 100 pF	3 x 3	2kV 1KV on VBAT domain Class 2	2kV 1KV on VBAT domain		0/3	0/3	0/3	0/3
Electrostatic	discharge - Cha	arge Device Mo	odel		1					
		LQFP176	1 x 3				0/3	0/3	0/3	0/3
		UFBGA176	1 x 3				0/3			0/3
ESD CDM		LQFP144	1 x 3	500V	500V		0/3			W15-12
ESD CDM	JESD22-C101	LQFP100	1 x 3	class II	300 v	· · · · · · · · · · · · · · · · · · ·	0/3			W15-12
		LQFP64	1 x 3					0/3		W12-12
		WLCSP66	1x3					0/3		W21-12
	·	•				•				
LATCH UP			1				r	г	-	
LU	JESD78	LQFP176	3 x 6	A0/R1	125℃		0/6	0/6	0/6	0/6
NV/M Endura	100 8 Data Poto	ntion - 10kov	EW @ 11	25°C then Storage						
				<u></u>	72h	0/77	0/77	0/77		
EDR	JESD-22A117	HTB 175ዮ	3 x 77	A0/R1	336h	0/77	0/77	0/77		
EDR	JESD-22ATT	HIB 1/50	3 X / /	10kcyc + 672h						
					672h	0/77	0/77	0/77		
NVM Endurar	nce & Data Rete	ntion – 10kcy	EW @ + <u>25</u>	5°C then Storage						
EDR	JESD-22A117	HTB 175ዮ	2 x 77	A0/R1 10kcyc + 72h	72h			0/77	0/77	
NVM Endurar	nce & Data Rete	ntion – 10kcy	EW @ +-4	0℃ then Storage						
EDR	JESD-22A117	HTB 175℃	1 x 77	A0/R1 10kcyc + 72h	72h				0/77	

Early Life Fai	lure Rate									
ELFR	MIL-STD-883 Method 1005 JESD22- A108 JESD74	HTOL 140℃, 3v3	3 x 500	A0/R1 24h	24h	0/500	0/500	0/500		
High Temperature Operating Live										
					72h	0/77	0/77	0/77		
	JESD-22A108	HTOL		A0/R1	168h					0/77
HTOL	JESD-22A100	140°C, 3v3	3 x 77	672h	336h	0/77	0/77	0/77		
					672h	0/77	0/77	0/77		

3.1.2 Packages related tests:

The package oriented test results are summarized in the following tables.

		Short description	on			Results		
Descript.	Test/Method	Conditions	Sample Size	Criteria	Read out /Duration	Lot 1	Lot 2	Lot 3
-						Cut 1.1	Cut 1.1	Cut 2.0
	Pre							
PC	J-STD-020D JESD22-A113	Peak temperature at 260 ℃, 3 IR-reflows	1 x 308	A0/R1	N.A	0/308	0/308	0/308

Table 2. LQFP176 package oriented test results

	Temperature Humidity Bias after Preconditioning								
тнв	JESD 22-A101	85°c,	1 y 77	A0/R1	500h	0/77	0/77	0/77	
IHB	JESD 22-A101 85% RH	I X / /	1000h	1000h	0/77	0/77	0/77		

AC	JESD 22-A102	Ta=121℃ P=2.08atm	1 x 77	A0/R1 96h	96h	0/77	0/77	0/77

	7							
тс	JESD 22-A104	Ta=-50℃/+150℃	1 v 77	A0/R1	500 TC	0/77	0/77	0/77
тс	JESD 22-A104 Ta=-50 C/+150 C	1 X / /	1000TC	1000 TC	0/77	0/77	0/77	

	High Temperature Storage Life after Preconditioning								
		150%	1 y 77	A0/R1	500h	0/77	0/77	0/77	
HTSL	JESD 22-A103 150℃	1 X / /	1000h	1000h	0/77	0/77	0/77		

Short description											
Descript.	escript. Test/Method Conditions Sample Criteria Read out /Duration										
	Cut 1.1										
Preconditioning: moisture sensitivity level 3											
PC	PC J-STD-020D JESD22-A113 Peak temperature at 260 °C, 3 IR-reflows 1 x 308 A0/R1 N.A										
	Tempe	erature Humidity E	Bias after F	Preconditio	oning						
		85ዮ		۸0/D1	500h	0/77					

ТНВ	JESD 22-A101	85℃, 85% RH	1 x 77	A0/R1 1000h	500h 1000h	0/77 0/77

	Autoclave after Preconditioning										
AC	JESD 22-A102	Ta=121℃ P=2.08atm	1 x 77	A0/R1 96h	96h	0/77					

Thermal Cycling after Preconditioning										
тс	JESD 22-A104	Ta=-50℃/+150℃	1 x 77	A0/R1	500 TC	0/77				
IC.	JESD 22-A104	Ta=-50 C/+150 C	I X / /	1000TC	1000 TC	0/77				

	High Temperature Storage Life after Preconditioning						
		4500	4 77	A0/R1	500h	0/77	
HISL	HTSL JESD 22-A103	150℃	1 x 77	1000h	1000h	0/77	

Table 4. LQFP100 package oriented test results

	Results							
Descript.	Test/Method	Conditions	Sample Size	Criteria	Lot 9			
	Preconditioning: moisture sensitivity level 3							
PC	J-STD-020D JESD22-A113	Peak temperature at 260 ℃, 3 IR-reflows	1 x 308	A0/R1	N.A	0/308		

Temperature Humidity Bias after Preconditioning							
тнв	JESD 22-A101	85°c,	1 x 77	A0/R1	500h	0/77	
ПВ	JESD 22-A101	85% RH	1 X / /	1000h	1000h	0/77	

		Autoclave after	Precondit	tioning		
AC	JESD 22-A102	Ta=121℃ P=2.08atm	1 x 77	A0/R1 _{96h}	96h	0/77

	7	Thermal Cycling a	fter Preco	nditioning		
тс	JESD 22-A104	Ta=-50℃/+150℃	1 x 77	A0/R1	500 TC	0/77
IC.	JESD 22-A104	Ta=-50°C/+150°C	1 X / /	1000TC	1000 TC	0/77

High Temperature Storage Life after Preconditioning							
		150%	4 × 77	A0/R1	500h	0/77	
HISL	HTSL JESD 22-A103	150℃	1 x 77	1000h	1000h	0/77	

		Short description	on			Results			
Descript.	Test/Method	Conditions	Sample Size	Criteria	Read out /Duration	Lot 10			
					•	Cut 1.0			
Preconditioning: moisture sensitivity level 3									
PC	J-STD-020D JESD22-A113	Peak temperature at 260 °C, 3 IR-reflows 1 x 308		A0/R1	N.A	0/308			
Temperature Humidity Bias after Preconditioning									
тнв	JESD 22-A101	85°,	1 x 77	A0/R1	500h	0/77			
пв	JE3D 22-A101	85% RH	1 X / /	1000h	1000h	0/77			
		Autoclave after	Precondit	tioning					
AC	JESD 22-A102	Ta=121℃ P=2.08atm	1 x 77	A0/R1 _{96h}	96h	0/77			
	7	Thermal Cycling a	fter Preco	nditioning					
тс	JESD 22-A104	Ta=-50℃/+150℃	1 x 77	A0/R1	500 TC	0/77			
	JESD 22-A104	Ta=-500/+1500	I X / /	1000TC	1000 TC	0/77			
	High Te	mperature Storage	e Life after	^r Precondit	tioning				
HTSL	JESD 22-A103	150%	1 x 77	A0/R1	500h	0/77			
HISL	JEOD 22-A103	150ზ	I X / /	1000h	1000h	0/77			

Table 5. LQFP64 package oriented test results

Table 6. WLCSP66 package oriented test results

	Short description							Results			
Descript.	Test/Method	Conditions	Sample Size	Criteria	Read out /Duration	Lot 5	Lot 6	Lot 7	Lot 8	Lot 9	
			Tempe	erature Hu	midity Bias						
тнв	JESD 22-A101	85°C,	3 x 77	A0/R1	500h			0/77	0/77	0/77	
пр	JE3D 22-A101	85% RH	3 X 1 1	1000h	1000h			0/77	0/77	W15-12	
	Thermal Cycling										

			/	nermai Cy	/ciiiig				
тс	TC JESD 22-A104 Ta=65℃/+150℃	2 v 77	A0/R1	250	TC		0/77		
	JESD 22-A104	Ta=65℃/+150℃	2 X / /	500TC	500	TC		0/77	0/77

			High Te	mperature	Storage Lif	e			
		150%	2 v 77	A0/R1	500h	0/77	0/77	0/77	
HTSL	JESD 22-A103	150ზ	3 X / /	1000h	1000h	0/77	0/77	0/77	

4 APPLICABLE AND REFERENCE DOCUMENTS

- ADCS 0061692 : RELIABILITY TESTS AND CRITERIA FOR QUALIFICATIONS
- SOP 2.6.11: Program management fro product qualification
- SOP 2.6.19: Process maturity level
- SOP 2.6.2: Process qualification and transfer management
- SOP 2.6.7: Product maturity level
- SOP 2.6.9: Package and process maturity management in Back End
- JESD22-A101: Steady state temperature humidity bias life test
- JESD22-A102: Accelerated moisture resistance unbiased autoclave
- JESD22-A103: High temperature storage life
- JESD22-A104: Temperature cycling
- JESD22-A106: Thermal shock
- JESD22-A108: Temperature, bias, and operating life
- JESD22-A113: Preconditioning of nonhermetic surface mount devices prior to reliability testing
- JESD22-A114: electrostatic discharge (ESD) sensitivity testing human body model (HBM)
- JESD22-A117: Endurance and Data retention
- JESD22-C101: Electrostatic discharge (ESD) sensitivity testing charge device model (CDM)
- JESD78A: IC Latch-up test
- J-STD-020D: Moisture/reflow sensitivity classification for nonhermetic solid state surface mount devices

5 GLOSSARY

- EDR NVM endurance, data retention and operational life
- HTOL High temperature operating life
- HTB High temperature bake
- ESD HBM Electrostatic discharge (human body model)
- ESD CDM Electrostatic discharge (charge device model)
- LU Latch-up
- PC Preconditioning (solder simulation)
- THB Temperature humidity bias
- TC Temperature cycling
- AC Autoclave (pressure pot)
- HTSL High temperature storage life

6 REVISION HISTORY

Date	Revision	Changes
15-April-2011	1	Initial release.
30-September-2011	2	WLCSP66 intermediate trials reliability results
16-December-2011	3	WLCSP66 intermediate trials reliability results updated
20-December-2011	4	Correction Typo error in Package Qualification references
05-March-2012	5	Adding of Cut 2.2 reliability trials results
06-March-2012	6	Correction Typo error: Cut 2.1 corrected by Cut 2.2 and 411Y corrected by 411X
05-April-2012	7	Update of WLCSP66 reliability trial results

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com