

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPD-IPC/12/7366 Dated 31 Jul 2012

L6591 : METAL MASK CHANGE

Table 1. Change Implementation Schedule

Forecasted implementation date for change	15-Sep-2012
Forecasted availability date of samples for customer	24-Jul-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	24-Jul-2012
Estimated date of changed product first shipment	15-Jan-2013

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	L6591 and L6591TR
Type of change	Product design change
Reason for change	To enhance burst mode functionality.
Description of the change	We have added the thermal compensation of the two diodes (2 Vbe) attached to the COMP pin. We have also modified the Icomp minimum limit.
Change Product Identification	By a new Finished Goods code
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPD-IPC/12/7366
Please sign and return to STMicroelectronics Sales Office	Dated 31 Jul 2012
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
Change Denied	Date:
Change Approved	Signature:
Remark	
· · · · · · · · · · · · · · · · · · ·	

Name	Function
Montemezzo, Vincenzo	Marketing Manager
Borghi, Maria Rosa	Product Manager
Motta, Antonino	Q.A. Manager

DOCUMENT APPROVAL

WHAT:

We have added the thermal compensation of the two diodes (2 Vbe) attached to the COMP pin. We have also modified the Icomp minimum limit.

WHY:

To improve the burst mode performance and to maximize the yield.

HOW:

Through a metal mask change, as per the attached Reliability Report.

This modification will be identified by a new internal part number : L6591-6LF/ L6591TR-6LF/

WHEN:

The production of the new product will be based on material availability and customers' volumes. Phase-out and phase-in will be done accordingly.

Samples of the new product are already available.

Reliability Report

General Information		Locati	ons
Product Line	MU62BBX(UL25CB5+U335AB6)	Wafer fab location	CATANIA(UL25) +
Product Description	PWM CONTROLLER FOR ZVS		ANG MO KIO(U335)
	HALF-BRIDGE	Assembly plant	AMKOR ATP1 -
Product division	I&PC	location	PHILIPPINES
Package SO16N			
Silicon process technology	BCD6 (UL25) – BCDoffline(U335)	Reliability assessment	Pass

DOCUMENT HISTORY

Version	Date	Pages	Author	Comment
1.0	4-July -12	7	G. Capodici	Original document

Issued by

Giuseppe Capodici

Reviewed by

Alceo Paratore

Approved by

Antonino Motta

Table of Contents

1	AP	PPLICABLE AND REFERENCE DOCUMENTS	3
2	RE	ELIABILITY EVALUATION overview	4
2	2.1	Objectives	4
2	2.2	Conclusion	4
3	De	evice Characteristics	5
3	3.1	Traceability	5
4	Te	ests results summary Latch-up	6
4	I .1	Test plan and results summary	6
5		ectrical Characterization Tests	
		.1 Latch-up	
	5.1.	.2 E.S.D	7

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100	: Stress test qualification for integrated circuits
8161393A	: General Specification For Product Development

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

This report contains the reliability evaluation of MU62BBX(UL25CB5+U335AB6) device diffused in CATANIA(UL25) + ANG MO KIO(U335) and assembled in SO16N in AMKOR ATP1 - PHILIPPINES.

The MU62 BBX device is a metal option of the already qualified MU62 BAX device (See RR007709CS2047). According to Reliability Qualification Plant, below is reported the electrical characterization:

Electrical Characterization

- ESD resistance test
- LATCH-UP resistance test

2.2 Conclusion

Taking in account the results of the trials performed the MU62BBX(UL25CB5+U335AB6) diffused in CATANIA(UL25) + ANG MO KIO(U335) and assembled in SO16N in AMKOR ATP1 - PHILIPPINES can be qualified from reliability viewpoint.

3 DEVICE CHARACTERISTICS

3.1 Traceability

Wafer fab information (UL25)		
Wafer fab manufacturing location	CATANIA	
Wafer diameter	8 inches	
Wafer thickness	375µm	
Silicon process technology	BCD6	
Die finishing back side	Raw Silicon	
Die size	1373x1058 μm	
Bond pad metallization layers	AICu	
Passivation	USG+SiN+Polyimide	
Metal levels	3	

Wafer fab information (U335)		
Wafer fab manufacturing location	ANG MO KIO	
Wafer diameter	6 inches	
Wafer thickness	375µm	
Silicon process technology	BCD OFFLINE	
Die finishing back side	Cr/Ni	
Die size	1930x2020 μm	
Bond pad metallization layers	AlSiCu	
Passivation	SiN	
Metal levels	1	

Assembly Information		
Assembly plant location	AMKOR ATP1 - PHILIPPINES	
Package description	SO16N	
Die pad size	2.438x4.826mm	
Molding compound	Sumitomo G600	
Wires bonding materials/diameters	Au/1mils	
Die attach material	Ablebond 8290	
Lead solder material	Sn	

4 TESTS RESULTS SUMMARY LATCH-UP

4.1 Test plan and results summary

Electrical Characterization Tests							
Test	Method	Conditions	Sample/ Lots	Number of lots	Duration	Results Fail/SS	
ESD	Electro Static Discharge						
	Human Body Model	+/- 2kV ALL pins except HV (13,14,15,16) pins +/- 1kV Only HV (13,14,15,16) pins	3	1		0/3	
	Charge Device Model	+/- 750V	3	1		0/3	
LU	Latch-Up						
	Over-voltage and Current Injection	Tamb=85°C Jedec78	6	1		0/6	

5 ELECTRICAL CHARACTERIZATION TESTS

5.1.1 Latch-up

This test is intended to verify the presence of bulk parasitic effects inducing latch-up. The device is submitted to a direct current forced/sinked into the input/output pins. Removing the direct current no change in the supply current must be observed.

The latch up test was performed in the two following conditions:

- 1. Pin1 max current 1mA, Pin 8 max current 3mA, Pins 12-16 NC, Pins 1,2,3,4 always LOW, tested only negative trials
- 2. Pin1 max current 1mA, Pin8 max current 3mA, Pins 12-16 NC, Pins 1, 2 always HIGH, tested only positive trials, Pins 3, 4 always LOW, tested only negative trials

In both cases the device passes Injection Negative up to -50mA and Injection Positive up to +100mA, and Overvoltage up to 25V.

5.1.2 E.S.D.

This test is performed to verify adequate pin protection to electrostatic discharges.

- The flow chart is the following:
 - Initial testing @ Ta=25°C
 - ESD discharging @ Ta=25°C
 - Final Testing @ Ta=25°C

TEST CONDITIONS:

0	Human Body Model	ANSI/ESDA/JEDEC STANDARD JES001
		CDF-AEC-Q100-002

• Charge Device Model ANSI/ESD STM 5.3.1 ESDA – JEDEC JESD22-C101 CDF-AEC-Q100-011

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com