

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN AMS-APD/12/7237 Notification Date 04/20/2012

Material set change for SO8, SO14 & SO16 packages produced in ST Bouskoura (Morocco)

Table 1.	Change	Implementation	Schedule
----------	--------	----------------	----------

Forecasted implementation date for change	13-Apr-2012
Forecasted availabillity date of samples for customer	13-Apr-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	13-Apr-2012
Estimated date of changed product first shipment	20-Jul-2012

Table 2. Change Identification

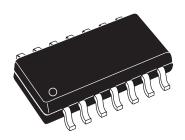
Product Identification (Product Family/Commercial Product)	See attached
Type of change	Multiple types of changes
Reason for change	Production rationalization
Description of the change	Progressing on the activities related to SO manufacturing processes, ST is glad to announce availability of a new material set halogen free, for Analog Division of AMS Group products assembled in SO8-14-16 packages in ST Bouskoura (Morocco) plant. Samples availability: week 21 2012. If requested by customer, please enter in the system a non-standard samples order in class 2 with comment "PCN#7174 qualification". Then send an e-mail to Angelique DUCHENE with SO# for availability follow-up. 1st shipment timeschedule: for products assembled in SO8 & SO16 ==> June 2012 For products assembled in SO14 ==> August 2012.
Product Line(s) and/or Part Number(s)	See attached
Description of the Qualification Plan	See attached
Change Product Identification	On label 2nd level interconnect digit does change from E4 ==> E3
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN AMS-APD/12/7237
Please sign and return to STMicroelectronics Sales Office	Notification Date 04/20/2012
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function
Camiolo, Jean	Division Marketing Manager
Grillo, Lionel	Division Marketing Manager
Lefebvre, Laurence	Division Marketing Manager
Mcdonagh, Gary	Division Marketing Manager
De marco, Alberto	Division Product Manager
Italia, Francesco	Division Product Manager
San biagio, Marcello	Division Product Manager
Bugnard, Jean-Marc	Division Q.A. Manager
Lisi, Giuseppe	Division Q.A. Manager


DOCUMENT APPROVAL

PCN AMS-APD/12/7174

Analog, MEMS and Sensor Group

New material set halogen free for SO Narrow produced in ST Bouskoura (Morocco)

SO Narrow

WHAT:

Progressing on the activities related to SO manufacturing processes, ST is glad to announce availability of a new material set halogen free, for AMS products produced in SO.

Material	Current process SO8/14/16	Modified process SO8/14/16
Assembly location	ST Bouskoura	ST Bouskoura
Die attach	ABLEBOND 8601S-25	ABLEBOND 8601S-25
Wire	Copper 1 mil	Copper 1mil
Leadframe	Copper	Copper
Plasma cleaning	Yes	Yes
Plating	NiPdAgAu	Sn
Molding compound	Sumitomo G700K	Sumitomo EME G630AY

For the complete list of the part numbers affected by the change, please refer to the attached Products list.

Samples will be available upon request from W221.

WHY:

To internalize plating process for better control, to improve product reliability and performance through molding compound change (see below table) for SO packages produced in ST Bouskoura.

	current com- pound	New compound	Comment
Tg (°C)	125	135	connent
CTE1 (10- ⁵ /°C)	1.2	0.9	Better matched with silicon CTE which will reduce mechanical stress during
CTE2 (10-5/°C)	4.9	3.4	thermal variation, reducing delamina- tion risk and reducing electrical drift caused by piezoelectrical effect.
F. modulus at 25°C (N/mm ²)	19000	25000	Stiffer compound allowing less package
F. modulus at 260°C (N/mm ²)	600	700	deformation and then minimizing stress on die.
Cl- (ppm)	4	2	Less ionic contamination which is im- portant for Copper bonding.
Water absorption	0.15	0.13	Little reduction of water absorption minimizing water content inside pack- age and then reducing stress during package soldering

R.

HOW:

The change, that covers AMS products, is under qualification through attached qualification plan. Here below you'll find the details of qualification plan and intermediate results.

Qualification program and results:

The qualification program consists mainly of comparative electrical characterization and reliability tests. Please refer to Appendix 1 for all the details.

WHEN:

Production in ST Bouskoura for AMS is forecasted in June 2012 for SO8/S016 and in August 2012 for S014.

Marking and traceability:

Unless otherwise stated by customer specific requirement, the traceability of the parts assembled with the new material set will be ensured by new internal sales types and marking on package and on label.

2nd level interconnect will move from e4 to e3.

The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all information reported on the relevant datasheets.

There is as well no change in the packing process or in the standard delivery quantities.

Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C).

In any case, first shipments may start earlier with customer's written agreement.

Reliability Report

New Halogen free material set SO ST Bouskoura

General	Information	Loca	ations
Product Line	0912, 0393, 0924, P60B	Wafer fab	ST Singapore
Product Description	Dual Op amp CMOS, Dual op amp bipolar, Rail to rail op amp, ripple carry binary counter/divider and oscillator	Assembly plant	ST Bouskoura (Morocco)
P/N	TS912IDT, LM393DT, TS924IDT, HCF4060M013TR		
Product Group	AMS	Reliability Lab	Grenoble
Product division	Analog		
Package	SO8/14/16		
Silicon Process technology	CMOS HC1PA, HBIP40, HF2CMOS, CMOS metal gate		

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

TABLE OF CONTENTS

1	APP	LICABLE AND REFERENCE DOCUMENTS	
2	GLO	SSARY	
3	RELI	IABILITY EVALUATION OVERVIEW	
-	3.1	OBJECTIVES	
	3.2	CONCLUSION	
4	DEV	ICE CHARACTERISTICS	
	4.1	DEVICE DESCRIPTION	
	4.2	CONSTRUCTION NOTE	
5	TES	TS RESULTS SUMMARY	
	5.1	TEST VEHICLE	
	5.2	TEST PLAN AND RESULTS SUMMARY	
6	ANN	EXES	
	6.1	DEVICE DETAILS	
	6.2	TESTS DESCRIPTION	
	6.3	ADDITIONAL RESULTS	

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description	
AEC-Q100	Stress test qualification for automotive grade integrated circuits	
AEC-Q101	Stress test qualification for automotive grade discrete semiconductors	
JESD47	Stress-Test-Driven Qualification of Integrated Circuits	

2 GLOSSARY

DUT	Device Under Test
РСВ	Printed Circuit Board
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 **Objectives**

To qualify new material set for SO produced in ST Bouskoura for AMS (Analog Mems & Sensor) group

3.2 Conclusion

Qualification Plan requirements have been fulfilled, up to now, without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

· _ _ _ _

4 DEVICE CHARACTERISTICS

4.1 Device description

TS912IDT: The TS912 is a rail-to-rail CMOS dual operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails Vcc + and Vcc-.

The output reaches VCC - +30 mV, VCC+ -40 mV, with RL = 10 kohms and VCC- +300 mV, VCC+ -400 mV, with RL = 600 ohms.

This product offers a broad supply voltage operating range from 2.7 to 16 V and a supply current of only 200 [A/amp (Vcc = 3 V)].

Source and sink output current capability is typically 40 mA (at Vcc = 3 V), fixed by an internal limitation circuit.

LM393D: These devices consist of two independent low voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

TS924IDT: The TS924 is a rail-to-rail quad BiCMOS operational amplifier optimized and fully specified for 3 and 5 V operation.

High output current allows low load impedances to be driven. The TS924 exhibits a very low noise, low distortion, low offset and high output current capability, making this device an excellent choice for high-quality, low-voltage and battery-operated audio systems.

HCF4060M013TR: The HCF4060B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages.

The HCF4060B consists of an oscillator section and 14 ripple carry binary counter stages.

The oscillator configuration allows design of either RC or crystal oscillator circuits. A RESET input is provided which reset the counter to the all 0's state and disable oscillator. A high level on the RESET line accomplishes the reset function. All counter stages are master slave flip-flops. The state of the counter is advanced one step in binary order on the negative transition of ϕ_1 (and ϕ_0). All inputs and outputs are fully buffered. Schmitt trigger action on the clock pin permits unlimited clock rise and fall time.

4.2 Construction note

	P/N TS912IDT	LM393DT	P/N TS924IDT	P/N HCF4060M013TR
Wafer/Die fab. informa-				
tion				
Wafer fab manufacturing	ST Singapore	ST Singapore	ST Singapore	ST Singapore
location				
Technology	CMOS HC1PA	HBIP40	HF2CMOS	CMOS metal gate
Process family	C1PAHV-2	GHBIP40-A	HFMS520	CMOSMG
Die finishing back side	RAW SILICON	LAPPED SILICON	RAW SILICON	LAPPED SILICON
Die size (microns)	2630x1980	870x590	1980x2450	1950x1700
Bond pad metallization	AlSi	AlSiCu	AlSiCu	AlSi
layers				
Passivation type	P-VAPOX/NITRIDE	P-VAPOX/NITRIDE	P-VAPOX/NITRIDE	P-VAPOX (Si glass)
Wafer Testing (EWS) in-				
formation				
Electrical testing manufac-	ST Singapore	ST Singapore	ST Singapore	ST Singapore
turing location				
Tester	ASL1K	ASL1K	ASL1K	ASL1K
Assembly information				
Assembly site	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Package description	SO8	SO8	SO14	SO16
Molding compound	EME G630AY	EME G630AY	EME G630AY	EME G630AY
Frame material	Cu	Cu	Cu	Cu
Die attach process	Epoxy Glue	Epoxy Glue	Epoxy Glue	Epoxy Glue
Die attach material	8601S-25	8601S-25	8601S-25	8601S-25
Wire bonding process	Thermosonic ball	Thermosonic ball	Thermosonic ball bon-	Thermosonic ball
	bonding	bonding	ding	bonding
Wires bonding mate-	Cu 1 mil	Cu 1 mil	Cu 1 mil	Cu 1 mil
rials/diameters				
Lead finishing process	electroplating	Electroplating	Electroplating	electroplating
Lead finishing/bump solder	Matte tin	Matte tin	Matte tin	Matte tin
material				
Final testing information				
Testing location	ST Bouskoura	ST Bouskoura	ST Bouskoura	ST Bouskoura
Tester	ASL1K	ASL1K	ASL1K	ASL1K

- 🧖 –

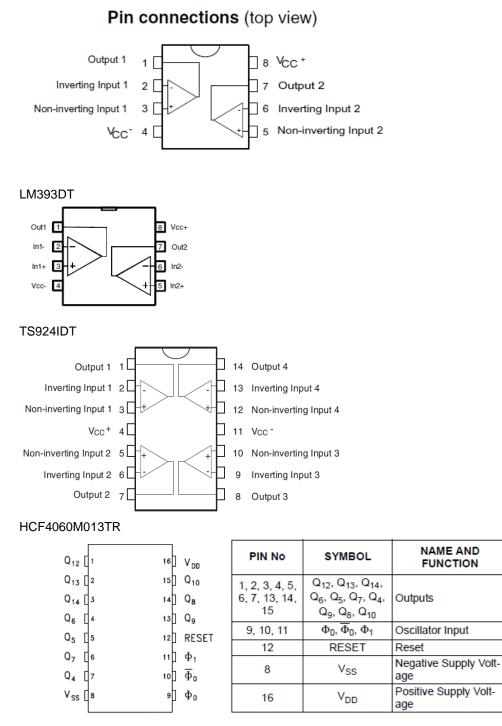
5 TESTS RESULTS SUMMARY

5.1 Test vehicle

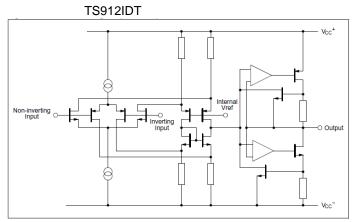
Lot #	Process/ Package	Product Line	Comments
1	HC1PA/SO8	0912	CZ2090FV01
2	HBIP40/SO8	0393	
3	HF2CMOS/SO14	0924	CZ20607401
4	Metal gate/SO16	P60B	CZ2080GV01

5.2 Test plan and results summary

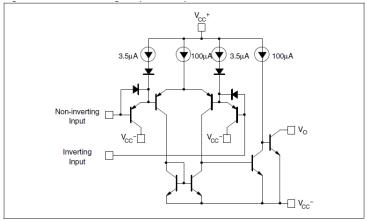
							Failu	ıre/SS		
Test	PC	Std ref.	Conditions	SS	Steps	Lot 1 0912	Lot 2 0393	Lot 3 0924	Lot 3 P60B	Note
Die Ori	ente	d Tests				0912	0393	0924	TOOD	
					168 H		0/78	0/78	0/50	
HTB	Ν	JESD22	$T_i = 125^{\circ}C, BIAS$		500 H		0/78	0/78	50	
		A-108			1000 H		78	0/78	50	
		IEGDAA			168 H	0/77	0/77	0/78	0/77	
HTSL	Ν	JESD22 A-103	$Ta = 150^{\circ}C$		500 H	0/77	0/77	0/78	0/77	
		A-105			1000 H	77	77	0/78	77	
Package	Orie	ented Tests								
РС		JESD22 A-113	Drying 24 H @ 125°C Store 168 H @ Ta=85°C Rh=85% Over Reflow @ Tpeak=260°C 3 times		Final	0/154	0/233	0/234	0/231	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121°C		96 H	0/77	0/77	0/78	0/77	
		JESD22			100 cy	0/77	0/78	0/78	0/77	
TC	Y	JESD22 A-104	Ta = -65° C to 150° C		200 cy	0/77	0/78	0/78	0/77	
		A-104			500 cy	0/77	0/78	0/78	0/77	
		JESD22			168 H		0/78	0/78	77	
THB	Y	A-101	Ta = 85°C, RH = 85%, BIAS		500 H		0/78	0/78	77	
		11 101			1000 H		78	78	77	
Other Te	sts				1					
		AEC Q101-	HBM		2KV					
ESD	Ν	001,002	CDM		1500V	3	3	3	3	
		and 005	MM		150V					
SD	Ν		After ageing 8h and 16h			0/24	0/24	0/24	0/24	

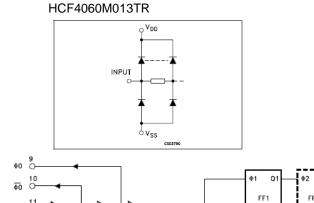

- <mark>/ _</mark>____

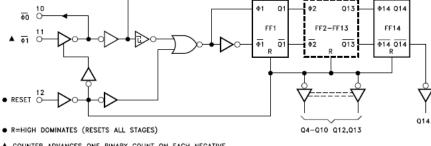
6 ANNEXES


6.1 Device details

6.1.1 Pin connection


TS912IDT




6.1.2 Block diagram

LM393DT

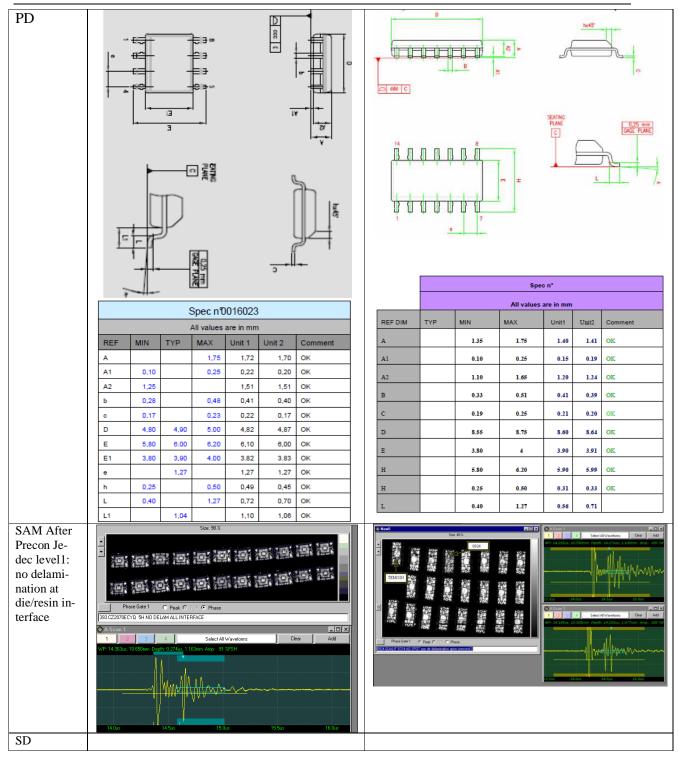
▲ COUNTER ADVANCES ONE BINARY COUNT ON EACH NEGATIVE GOING TRANSITION OF \$1 (AND \$0)

LC10620

6.2 Tests Description

Test name	Description	Purpose			
Die Oriented					
HTOL High Temperature Operating Life HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.			
HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias	The device is stressed in static configura- tion, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffu- sion process and internal circuitry limita- tions;	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects.			
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the pack- age materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.			
ELFR Early Life Failure Rate	The device is stressed in biased conditions at the max junction temperature.	To evaluate the defects inducing failure in ear- ly life.			
Package Oriented					
PC Preconditioning	The device is submitted to a typical temper- ature profile used for surface mounting de- vices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.			
AC Auto Clave (Pres- sure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.			
TC Temperature Cy- cling	The device is submitted to cycled tempera- ture excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the dif- ferent thermal expansion of the materials inte- racting in the die-package system. Typical fail- ure modes are linked to metal displacement, dielectric cracking, molding compound dela- mination, wire-bonds failure, die-attach layer degradation.			
TF / IOL Thermal Fatigue / Intermittent Oper- ating Life	The device is submitted to cycled tem- perature excursions generated by power cycles (ON/OFF) at T ambient.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the mate- rials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds fail- ure, die-attach layer degradation.			

PCN AMS-APD/12/7174

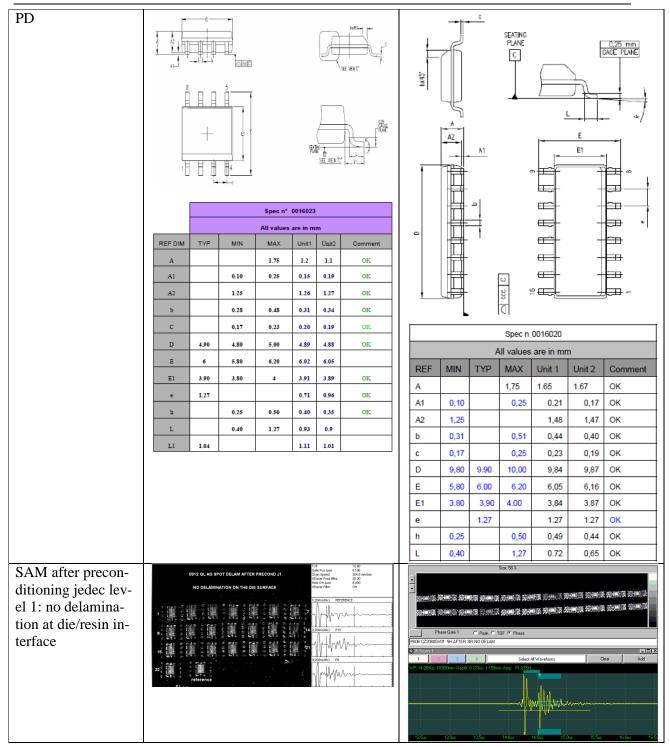

Test name	Description	Purpose
THB Temperature Humi- dity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of am- bient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Dis- charge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model	To classify the device according to his suscep- tibility to damage or degradation by exposure to electrostatic discharge.
LU Latch-Up	The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed.	To verify the presence of bulk parasitic effect inducing latch-up.

6.3 Additional results

Parameter	0393					0924					
Bonding strength			Ball Shear (g)	Pull Test (g)				Ball Shear (g)	Pull Test (g)		
	LS	5L	19.9	4		1	LSL	19.9	4		
	US	SL	NA	NA			JSL	NA	NA	t	
	5	Avg	36.84	15.46	l		Avg	45.11	15.87	İ	
		Мах	42.63	17.03	ĺ		Max	49.92	17.07	t	
	WB1	Min	33.92	12.26		WB1	Min	38.56	13.84	Ī	
		stdv	1.25	1.13			stdv	2.66	1.35	Ι	
		СРК	4.49	3.38			СРК	3.16	2.93		
Xray		67) 2	Sale of the	53° 221		A	G.9/			206	
Alay											

- <mark>/ </mark>-

PCN AMS-APD/12/7174


∕¶_®

Parameter	0912				P60B				
Bonding strength	LSL	Ball Shear (g)	Pull Test (g)		l	LSL	Ball Shear (g) 19-9	Pull Test (g)	
	USL	19-9 NA	4 NA		l	JSL	NA	NA	
	Avg	39.15	15.71			Avg	42.3	15.11	
	Max	44.37	17.08		5	Мах	48.8	16.13	
	Min	36.58	13.98		WB3	Min	36.6	14.43	
	stdv	1.86	0.96			stdv	2.50	0.53	
	СРК	3.43	4.07			СРК	2.99	6.99	
Picture	A.5		20					Б (FЧ (GV) (GV)	5-5-5 060 208
Xray				9	-000-				

- 🧖 🦳 ———

PCN AMS-APD/12/7174

Electrical comparison:

		Mean Comparison			Cpk com			
test	Unit	Old	New	Shift	Old	New	Ratio	Comment
for one an	mA	0.49	0.50	0.01	1.98	2.74	1.38	
Vio	mV	-0.30	-0.59	-0.29	2.96	3.42	1.15	
Vio	mV	-0.31	-0.73	-0.42	2.94	4.32	1.47	
lcc	uA	0.17	0.17	0.00	2.31	14.79	6.40	
Vio	mV	-0.44	-0.77	-0.34	2.38	4.14	1.74	
Vio	mV	-0.47	-0.99	-0.52	2.38	4.97	2.09	
for one an	uA	157.34	158.88	1.54	180.00	193.76	1.08	
lio	pА	0.77	0.98	0.21	13.53	13.89	1.03	
lio	pА	5.61	2.90	-2.71	20.84	36.92	1.77	

		-						
	-	I	Mean Comparisor	1	0	pk comparison		
	test parameter	Old	New 68175NT	Shift	Old	New	Ratio	Comment
Limits	0QA 1FT 2WS							
Icc 30V	mA	0.28	0.30	0.02	18.43	22.98	1.25	
Icc 5V	mA	0.24	0.25	0.01	35.08	32.92	0.94	
P101_A1	mV	-0.41	0.07	0.48	6.87	6.17	0.90	
P101_B1	mV	-0.47	-0.28	0.20	4.76	4.74	0.99	
P101_A3	mV	-0.68	-0.29	0.38	6.16	4.59	0.74	CPK>2
P101_B3	mV	-0.71	-0.67	0.05	4.42	3.57	0.81	
P101_A4	mV	0.19	0.56	0.37	6.92	5.60	0.81	
P101_B4	mV	0.13	0.23	0.10	5.15	4.65	0.90	
P101_A2	mV	-0.20	0.25	0.46	7.16	6.26	0.87	
P101_B2	mV	-0.27	-0.07	0.20	4.99	5.07	1.02	
Vol 5V	V	0.25	0.25	-0.67%	5.06	8.66	1.71	
Vol 5V	V	0.25	0.25	0.11%	8.23	9.50	1.15	

		M	ean Comparis	on	0	Cpk compariso	on	
test	Units	Old	New	Shift	Old	New	Ratio	Comment
Vio	mV	0.10	0.09	-0.01	8.45	13.39	1.6	
Vio	mV	0.01	0.09	0.08	8.1	10.05	1.2	
Vio	mV	0.04	0.04	0.00	8.23	14.77	1.8	
Vio	mV	0.06	0.09	0.03	7.79	12.16	1.6	
lcc	mA	1.17	1.26	0.09	12.18	18.82	1.5	
Vio	mV	0.05	0.05	0.00	10.22	16.18	1.6	
Vio	mV	0.05	0.06	0.01	9.7	11.67	1.2	
Vio	mV	-0.03	0.03	0.06	9.55	15.65	1.6	
Vio	mV	0.02	0.06	0.03	9.26	13.16	1.4	
lcc	mA	1.02	1.07	0.05	2.88	5.20	1.8	
Vio	mV	0.10	0.09	-0.01	5.00	6.13	1.2	
Vio	mV	0.10	0.10	0.00	3.30	4.41	1.3	
Vio	mV	0.03	0.07	0.04	5.60	6.02	1.1	
Vio	mV	0.06	0.09	0.04	4.10	5.03	1.2	
lcc	mA	0.96	1.01	0.05	4.34	8.41	1.9	
Vio	mV	0.14	0.13	-0.01	4.4	6.09	1.4	
Vio	mV	0.14	0.14	0.00	4.1	4.36	1.1	
Vio	mV	0.07	0.11	0.04	5.2	5.99	1.2	
Vio	mV	0.10	0.13	0.04	4.5	5.01	1.1	

		M	ean Compa	rison	Ср	k Comparison	1	
Test Name	Unit	Old	New	% Shift	Old	New	Ratio	Comments
lcc	uA	0.01	-0.03	0.04%	297.49	380.99	1.28	
lcc	uA	0.02	0.01	0.01%	454.59	927.07	2.04	
lcc	uA	0.12	0.07	0.06%	86.45	310.08	3.59	
lcc	uA	0.28	0.02	0.26%	406.38	572.34	1.41	
Vol 5V	mV	131.99	134.77	-2.79%	20.24	31.35	1.55	
Vol 5V	mV	134.09	135.06	-0.97%	18.82	27.32	1.45	
Vol 5V	mV	138.79	137.23	1.56%	18.71	22.77	1.22	
Vol 5V	mV	138.43	137.64	0.79%	18.49	24.04	1.30	
Vol 5V	mV	139.01	137.12	1.88%	18.03	22.66	1.26	
Vol 5V	mV	146.01	144.41	1.60%	17.13	23.07	1.35	
Vol 5V	mV	123.92	126.61	-2.69%	18.06	32.94	1.82	
Vol 5V	mV	141.68	131.88	9.79%	15.75	29.84	1.89	
Vol 5V	mV	148.70	138.11	10.60%	16.96	22.58	1.33	
Vol 5V	mV	157.08	145.93	11.15%	17.21	19.46	1.13	
Vol 15V	mV	217.38	208.10	9.29%	43.32	39.89	0.92	
Vol 15V	mV	386.89	375.07	11.81%	20.05	33.49	1.67	
Vol 15V	mV	403.52	417.17	-13.65%	19.52	26.63	1.36	
Vol 15V	mV	408.17	419.30	-11.14%	19.5	29.90	1.53	
Vol 15V	mV	407.64	416.66	-9.02%	18.35	26.99	1.33	
Vol 15V	mV	420.48	427.56	-7.09%	19.15	27.83	1.47	
Vol 15V	mV	351.04	363.88	-12.84%	21.48	45.69	2.13	
Vol 15V	mV	380.58	393.31	-12.84%	17.21	33.46	1.94	
Vol 15V								
	mV	415.37	425.96	-10.60%	18.23	26.77	1.47	
Vol 15V	mV	480.26	466.26	14.00%	19.37	22.61	1.17	
Voh 5V	V	4.23	4.24	-0.01%	29.82	23.04	0.77	
Voh 5V	V	4.27	4.24	0.03%	30.4	22.54	0.74	
Voh 5V	V	4.28	4.24	0.04%	33.94	21.22	0.63	
Voh 5V	V	4.27	4.24	0.03%	32.88	18.64	0.57	
Voh 5V	V	4.28	4.24	0.04%	33.19	16.73	0.50	
Voh 5V	V	4.28	4.24	0.04%	33.23	14.54	0.44	
Voh 5V	V	4.26	4.23	0.03%	29.12	12.71	0.44	
Voh 5V	V	4.26	4.25	0.01%	29.23	11.48	0.39	
Voh 5V	V	4.25	4.25	0.00%	26.92	10.81	0.40	
Voh 5V	V	4.24	4.24	0.00%	28.73	11.00	0.38	
Voh 15V	V	14.43	14.31	0.12%	16.22	14.29	0.88	
Voh 15V	V	14.35	14.31	0.05%	16.14	13.52	0.84	
Voh 15V	V	14.36	14.30	0.06%	16.37	11.52	0.70	
Voh 15V	V	14.35	14.30	0.05%	17.37	9.44	0.54	
Voh 15V	V	14.35	14.30	0.06%	16.15	8.00	0.50	
Voh 15V	V	14.35	14.29	0.06%	18.93	6.59	0.35	
Voh 15V	V	14.34	14.28	0.05%	18.42	5.60	0.30	
Voh 15V	V	14.29	14.32	-0.04%	11.84	5.18	0.44	
Voh 15V	V	14.28	14.32	-0.05%	11.92	4.60	0.39	
Voh 15V	V	14.27	14.32	-0.04%	14.25	4.43	0.31	
ILL_pin 11	nA	-19.30	-30.12	10.82%	47.06	6.74	0.14	
ILH_pin 12	nA	-2.69	-4.58	1.89%	750.45	1045.91	1.39	
ILH_pin 11	nA	-12.50	-2.66	-9.84%	108.19	870.66	8.05	
ILL_pin 12	nA	3.94	5.28	-1.35%	260.4	577.85	2.22	

- <u>,</u> —

The whisker test procedures identified in this report are used for determining the presence of tin whiskers and are performed by STMicroelectronics Inc., pursuant to current industry accepted JEDEC standards. The whisker test procedures used herein are unproven and may produce inconclusive results. STMicroelectronics Inc. makes no representation, warranty or guarantee of any kind with respect to the field performance, quality or freedom from whisker-related failures, of any package tested by STMicroelectronics using these procedures.

General Information

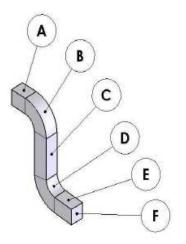
Package	SO8L					
Factory	STMicroelectronics Morocco					
Factory Location	Bouskoura					
Lead Frame Alloy	Copper : O194					
Lead Finish	Matte Tin					
Tin Thickness	7 – 20 um on leads					
Plating Vendor	Atotech GmbH					
Plating Machine	MECO					
Plating Chemistry	Stannopure HSM					
Mitigation	Post Plating Bake within 24hrs @150 for 1 hr.					

Chemical Plating process information

	Sep	tember 11 , 2008				
Description	Process	Volume tank (liter)	Make up Concentration (g/l or ml/l)	Density	Quantity used for the bath	
Electro cleaner	Puronon RTR	80	100g/I		8kg	
Activation Ni/Fe		1				
	Descabase Cu	80	50g/l		4kg	
Activation Cu	H2SO4	80	30ml/l	1.61	3.36litre	
Predip	MSA Special Acid HS	80	100ml/I	1.34	8litres	
	MSA Tin Solution HS 20		70g/l	1.53	81 litres	
	MSA Special Acid HS	1	190 g/l	1.34	71 litres	
	Stannopure HSM Additive HT	320	50ml/1	1	16litres	
Tin plate	Stannopure HSM Grain Refiner GF		15ml/l	1	4.8litres	
	Antioxydant SN		5ml/l	1	1.6 litres	
Neutral	Protectostan LF	80	100ml/l	1	8 litres	
	Becastrip EL Part A	1987.023	550ml/l	1.24	132 litres	
Stripper	Becastrip EL Part B	240	20ml/l	1.53	4.8 litres	

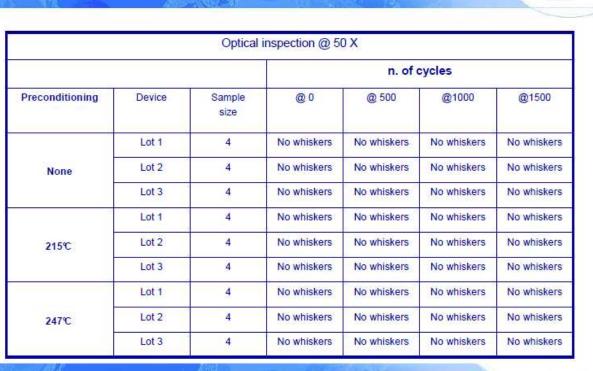
Equipment identification	Supplier		Ту	ye:		Model	
MECO 1	MECO	a	Continuous aut	tomatic platin	<u>, </u>	EPL 1200S	
		Electro	Activation	Piating	Neutralhear		
	Temperature		Activation RT	Plating 45°C	Neutraliser		
	Temperature Voltage /Ampérage	deaner		office Meetin			

PreCondition	Conditions
No Pre condition	Ambient Only
Reflow (Single Pass)	215 deg C in air
Reflow (Single Pass)	245 – 260 deg C in air


- **77** - -

Test	Short description	Conditions
Thermal Cycling	тс	- <mark>40℃ to + 85℃</mark>
High Humidity Storage	нт	55℃-85%RH
Controlled Ambient Storarge	RT	30℃-60%RH

Fig 1: Inspection Zones


Inspection: Top + 2 Sides

Lead identification

Temp. Cycles Whiskers inspection results

Soak 30c/60%RH Whisker Inspection Results

	Device	Sample size	Time in hrs					
Preconditioning			@ 0	@ 1000	@2000	@3000	@4000	
	Lot 1	4	No whiskers					
None	Lot 2	4	No whiskers					
	Lot 3	4	No whiskers					
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	
215℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	
247℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	
11	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whisker	

Soak 55c/85%RH Whisker Inspection Results

Optical inspection @ 50 X									
Preconditionin g	Device		Time in hrs						
		Sample size	@ 0	@ 1000	@2000	@3000	@4000	Discounted lead	
None	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	=	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
215°C	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
	Lot 1	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		
247℃	Lot 2	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers	-	
	Lot 3	4	No whiskers	No whiskers	No whiskers	No whiskers	No whiskers		

- 🔽 -

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com