

PRODUCT INFORMATION LETTER

PIL AMS-APD/12/7302 Notification Date 06/18/2012

SO18 & SO 28 package lead frame swap from AMST to ASM.

Production process involved	Backend package assembly
Production process details	Generic
Reason for change	to qualify new lead frame
Description	SO18 and SO28 lead frame supply to move from AMST to ASM, due to sudde unexpected closure of AMST plant. ASM is already an existing qualified lead frame supplier of ST. Electrical, mechanical specifications, material composition & design of both SO 18 & SO 28 lead frame from ASM remain the same. SO28 is qualified and the report is as attached. The qualification for SO18 is in progress and the report will be available on request once completed.
Forecasted date of implementation	16-Jul-2012
Forecasted date of samples for customer	15-Jun-2012
Forecasted date for STMicroelectronics change Qualification Plan results availability	11-Jun-2012
Description of qualification program	See Attached Qualification Plan
Involved ST facilities	ASM

Name	Function
Mcdonagh, Gary	Division Marketing Manager
Lisi, Giuseppe	Division Q.A. Manager
Italia, Francesco	Process Owner

DOCUMENT APPROVAL

IMS (Industrial & Multisegment Sector) APM (Analog, Power, MEMs) Group Integrated Analog and Flexible Electronics

MEMS, SENSOR & HIGH PERF. ANALOG Quality and Reliability

REL-6043-137W12

Reliability Report

SO28 .30 WITH EMBEDDED CRYSTAL

New Frame: ASM Assembly plant: Cirtek

T.V.: M41ST87WMX6E3 Line: D6AA61

General In	formation	L	ocations
Product Line	D6AA61	Wafer fab	Singapore
Product Description P/N	5.0 V and 3.3/3.0 V secure serial RTC and NVRAM supervisor with tamper detection and 128 bytes of clearable NVRAM M41ST87W	Assembly plant	Cirtek
Product Group	AMS		
Product division	Mixed Processes Division MSH	Reliability Lab	IMS-APM Catania Reliability Lab
Package	SO28 .30 with Embedded Crystal	Reliability assessmen	it Pass
Silicon Process technology	HCMOS4		

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	22-May-2012	9	Stefania Motta	Giovanni Presti	First Issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

IMS (Industrial & Multisegment Sector) APM (Analog, Power, MEMs) Group Integrated Analog and Flexible Electronics

MEMS, SENSOR & HIGH PERF. ANALOG Quality and Reliability

REL-6043-137W12

TABLE OF CONTENTS

1	APPI	LICABLE AND REFERENCE DOCUMENTS	3
		SSARY	
		ABILITY EVALUATION OVERVIEW	
-	3.1	OBJECTIVES	
	3.2	CONCLUSION	3
4	DEVI	CE CHARACTERISTICS	4
	4.1	DEVICE DESCRIPTION	4
	4.2	CONSTRUCTION NOTE	
5	TEST	IS RESULTS SUMMARY	
	5.1	Test vehicle	5
		TEST PLAN AND RESULTS SUMMARY	
6	ANN	EXES	6
	6.1	DEVICE DETAILS	6
	6.2	Tests Description	8

REL-6043-137W12

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

<u>3 RELIABILITY EVALUATION OVERVIEW</u>

3.1 Objectives

To qualify the new lead frame ASM in CIRTEK , for SO28 package, with Embedded Crystal using M41ST87 as TVs and applying the IR reflow profile (JL3) at Tpeak=260C

3.2 Conclusion

Reliability tests have shown that the devices behave correctly against environmental tests (no failure) until the final step. Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

<u>4</u> DEVICE CHARACTERISTICS

4.1 Device description

The M41ST87Y/W secure serial RTC and NVRAM supervisor is a low power 1280-bit, static CMOS SRAM organized as 160 bytes by 8 bits. A built-in 32.768 kHz oscillator (internal crystal-controlled) and 8 bytes of the SRAM are used for the clock/calendar function and are configured in binary coded decimal (BCD) format. An additional 11 bytes of RAM provide calibration, status/control of alarm, watchdog, tamper, and square wave functions. 8 bytes of ROM and finally 128 bytes of user RAM are also provided. Addresses and data are transferred serially via a two line, bidirectional I2C interface. The built-in address register is incremented automatically after each WRITE or READ data byte. The M41ST87Y/W has a built-in power sense circuit which detects power failures and automatically switches to the battery supply when a power failure occurs. The energy needed to sustain the SRAM and clock operations can be supplied by a small lithium button-cell supply when a power failure occurs.

Functions available to the user include a non-volatile, time-of-day clock/calendar, alarm interrupts, tamper detection, watchdog timer, and programmable square wave output. Other features include a power-on reset as well as two additional debounced inputs (RSTIN1 and RSTIN2) which can also generate an output reset (RST). The eight clock address locations contain the century, year, month, date, day, hour, minute, second and tenths/hundredths of a second in 24-hour BCD format. Corrections for 28, 29 (leap year), 30 and 31 day months are made automatically.

4.2 Construction note

	P/N M41ST87
Wafer/Die fab. information	
Wafer fab manufacturing location	AMK6 6" Singapore
Technology	HCMOS4
Process family	HCMOS4_P/CU
Die finishing back side	RAW SILICON - BACK GRINDING
Die size	2.880 x 4.520mm
Bond pad metallization layers	Ti/AlSiCu/TiN
Passivation type	PSG+Silicon Nitride+Polyimide
Wafer Testing (EWS) information	
Electrical testing manufacturing location	Asia Pac Singapore EWS
Tester	Teradyne J750
Assembly information	
Assembly site	CIRTEK - PHILLIPINES
Package description	SO28 .30 WITH EMBEDDED CRYSTAL
Molding compound	EME-6650RL
Frame material	Copper (C-194)
Die attach process	Glue dispense
Die attach material	Ablebond 84-1 LMIS R4
Die pad size	0.140 x 0.205 inch
Wire bonding process	Eutectic wirebond, crystal welding
Wires bonding materials/diameters	Au wire, 1.3mil
Final testing information	
Testing location	ST Muar
Tester	J750
Test program	J750-PBHLB83X-071_09_00

5 TESTS RESULTS SUMMARY

5.1 <u>Test vehicle</u>

Lot #	Diffusion Lot	Assy Lot	Package	Product Line	Comments
1	V61396T4	9133C01	SO28 .30 WITH EMBEDDED CRYSTAL	D6AA61	MicroCrystal,40kOhm MS3V-T1N, 12.5pF, #201820-BA01 New ASM Frame

5.2 Test plan and results summary

P/N M41ST87

					F	ailure/S	S		
Test	PC	Std ref.	Conditions		Steps	Lot	Lot	Lot	note
Die Orie	nted	Tests							
HTS	Ν	JESD22 A-103	Tj = 150℃	45	1000 H	0/45			
Package	Orie	ented Tests	-	-					
PC(1)		JESD22 A-113	Drying 24 H @ 125℃ Store 48 H @ Ta=60℃ Rh=60% Oven Reflow @ Tpeak=245℃ 3 times	210	Final	Pass	Pass	Pass	
PC(2)		JESD22 A-113	Drying 24 H @ 125℃ Store 48 H @ Ta=60℃ Rh=60% Oven Reflow @ Tpeak=260℃ 3 times	210	Final	Pass	Pass	Pass	
AC(1)	Y	JESD22 A-102	Pa=2Atm / Ta=121℃ After PC(1) 	50	96 H	0/50			
AC(2)	Y	JESD22 A-102	Pa=2Atm / Ta=121℃ After PC(2) @ 260℃	50	96 H	0/50			
TC(1)	Υ	JESD22 A-104	Ta = -40℃ to 125℃ After PC(1) @ 245℃	50	500 cy	0/50			
TC(2)	Y	JESD22 A-104	Ta = -40℃ to 125℃ After PC(2) @ 260℃	50	500 cy	0/50			
THS(1)	Y	JESD22 A-101	Ta = 85℃, RH = 85% After PC(1) 	50	1000 H	0/50			
THS(2)	Y	JESD22 A-101	Ta = 85℃, RH = 85% After PC(2) @ 260℃	50	1000 H	0/50			

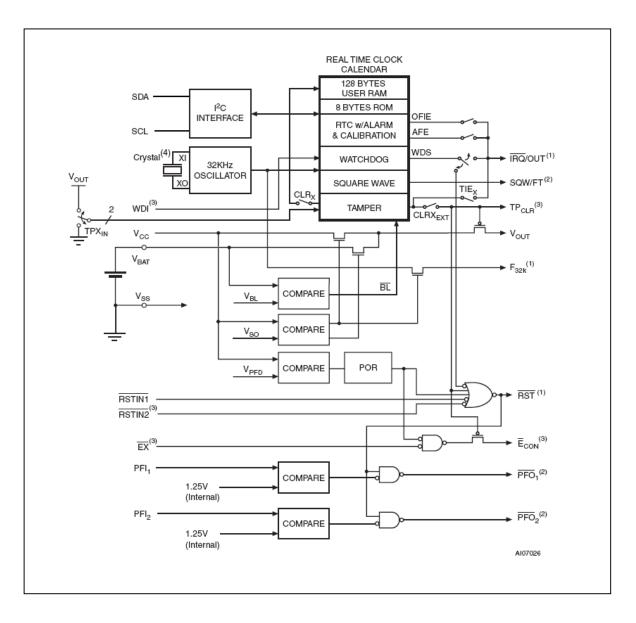
6 ANNEXES

6.1 Device details

6.1.1 Pin connection

2 3 5 5 7 M41ST87Y 3 M41ST87W	

XI ⁽¹⁾ Os				
	scillator input			
XO ⁽¹⁾ Os	scillator output			
E _{CON} ⁽²⁾ Co	onditioned chip enable output			
EX ⁽²⁾ Ex	ternal chip enable			
IRQ/OUT ⁽³⁾ Int	Interrupt/out output (open drain)			
PFI ₁ Po	wer fail input 1			
PFI ₂ Po	wer fail input 2			
PFO1 ⁽⁴⁾ Po	wer fail output 1			
2	wer fail output 2			
RST ⁽³⁾ Re	eset output (open drain)			
RSTIN1 Re	eset 1 input			
RSTIN2 ⁽²⁾ Re	eset 2 input			
SCL Se	erial clock input			
SDA Se	erial data input/output			
	uare wave output/frequency test			
WDI ⁽²⁾ Wa	atchdog input			
V _{CC} Su	upply voltage			
V _{OUT} Vo	ltage output			
- 55	round			
F _{32k} ⁽³⁾ 32	kHz square wave output (open drain)			
TP1 _{IN} Ta	mper pin 1 input			
113	mper pin 2 input			
TP _{CLR} ⁽²⁾ Ta	mper pin RAM clear			
V _{BAT} Po	ositive battery pin input			
NF ⁽⁵⁾ No	o function			
NC ⁽⁵⁾ No	o connect			

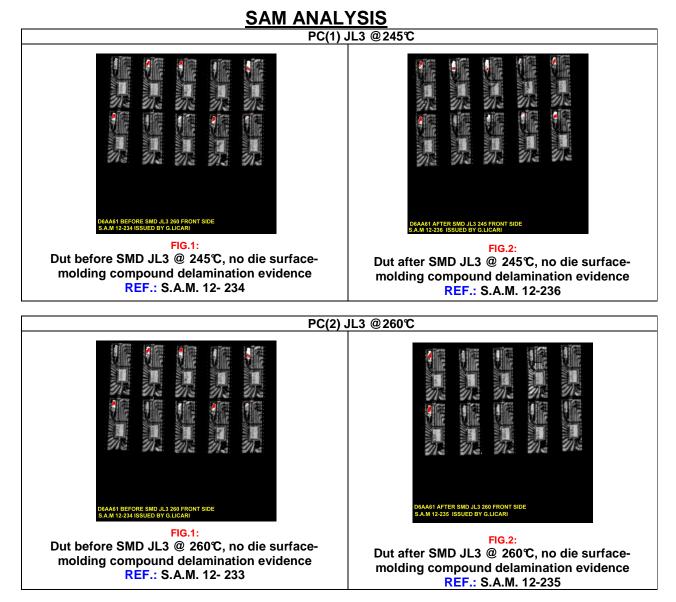


IMS (Industrial & Multisegment Sector) APM (Analog, Power, MEMs) Group Integrated Analog and Flexible Electronics

MEMS, SENSOR & HIGH PERF. ANALOG Quality and Reliability

REL-6043-137W12

6.1.2 Block diagram


6.2 Tests Description

High Temperature	The device is stored in unbiased condition at the max. Temperature allowed by the	To investigate the failure mechanisms activated
High Temperature		To investigate the failure mechanisms activated
		by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
Package Oriented		
PC t Preconditioning r	The device is submitted to a typical temperature profile used for surface mounting devices, after controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
AC	The device is stored in saturated steam, at	To investigate corrosion phenomena affecting
Auto Clave f	fixed and controlled conditions of pressure	die or package materials, related to chemical
(Pressure Pot) a	and temperature.	contamination and package hermeticity.
Temperature t	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
Lamparatura	The device is stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance, corrosion is put in evidence.

REL-6043-137W12

6.3 Pictures related to reliability tests

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com