

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APM/11/6872 Notification Date 10/31/2011

MATERIAL SET CHANGE (Cu wire 1.3 mils) for SO-8 package in ST Shenzhen (China) with ECOPAK 2 (Halogen Free) capability

Table 1.	Change	Implementation	Schedule
----------	--------	----------------	----------

<u>v</u> ;	
Forecasted implementation date for change	12-Jan-2012
Forecasted availabillity date of samples for customer	24-Oct-2011
Forecasted date for STMicroelectronics change Qualification Plan results availability	24-Oct-2011
Estimated date of changed product first shipment	30-Jan-2012

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	See attached list
Type of change	Package assembly material change
Reason for change	To improve service to ST Customers
Description of the change	Progressing on the activities related to quality improvement and along the plan of rationalizing the manufacturing processes, ST is glad to extend for the involved products the wires material from Au to Cu (1.3 mils) and announces the implementation of the Ecopack 2 (also called "Halogen Free") for the SO-8 package in the ST plant of Shenzhen (China).
Product Line(s) and/or Part Number(s)	See attached
Description of the Qualification Plan	See attached
Change Product Identification	ECOPACK 2 grade identification printed on the inner and external box
Manufacturing Location(s)	1]St Shenzhen -China

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN APM/11/6872
Please sign and return to STMicroelectronics Sales Office	Notification Date 10/31/2011
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function
Mcdonagh, Gary	Division Marketing Manager
Riviera, Antonio	Division Marketing Manager
De marco, Alberto	Division Product Manager
Naso, Lorenzo	Division Product Manager
Bugnard, Jean-Marc	Division Q.A. Manager
Lisi, Giuseppe	Division Q.A. Manager
Motta, Antonino	Division Q.A. Manager

DOCUMENT APPROVAL

Quality and Reliability

Reliability Evaluation Report To qualify SOIC8L 1.3mil Cu wire in STS-T.V.: L4931ABD50-TR\$2Z – Line: LW05 and SUMITOMO EME-G700K

General Information		
Product Line	LW05	
Product Description	Very low drop voltage regulators with inhibit	
P/N	L4931ABD50-TR\$2Z	
Product Group	IMS, APM Group	
Product division	Linear Voltage Regulators & Vref Mixed Processes Division	
Package	SO8	
Silicon Process technology	BIP (>6um)	

	Locations
Wafer fab	AMK6 6"
Assembly plant	STS
Reliability Lab	IMS-APM Catania Reliability Lab

DOCUMENT INFORMATION

Version	Date	Pages	Prepared by	Approved by	Comment
1.0	27-Jul-2011	9	Stefania Motta	Giovanni Presti	First Issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

Quality and Reliability

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
2	GLOSSARY	3
3	RELIABILITY EVALUATION OVERVIEW	
	3.1 OBJECTIVES	3
	3.2 CONCLUSION	
4	DEVICE CHARACTERISTICS	4
	4.1 DEVICE DESCRIPTION	4
	4.2 CONSTRUCTION NOTE	4
5	TESTS RESULTS SUMMARY	
	5.1 TEST VEHICLE	5
	5.2 Test plan and results summary	6
6	ANNEXES	7
	6.1 DEVICE DETAILS	7
	6.2 TESTS DESCRIPTION	9

Linear Voltage Regulators & Vref

Quality and Reliability

<u>1</u> APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

To qualify SOIC8L 1.3mil Cu wire in STS

On the LW05 line (the smallest die size among the TV) the reliability verification has been performed on corner lots (LL, HH bonding parameters) too.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure) until the final step @ 1000h. Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime..

Linear Voltage Regulators & Vref

4 DEVICE CHARACTERISTICS

4.1 Device description

The L4931ABxx L4931Cxx are very Low Drop regulators available in TO-220, SO-8, DPAK, PPAK and TO-92 packages and in a wide range of output voltages.

The very low drop voltage (0.4 V) and the very low quiescent current make them particularly suitable for low noise, low power applications and specially in battery powered systems.

A TTL compatible shutdown logic control function is available in PPAK and SO-8 packages.

This means that when the device is used as a local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. It requires only a 2.2 µF capacitor for stability allowing space and cost saving.

4.2 Construction note

	P/N L4931ABxx
Wafer/Die fab. information	
Wafer fab manufacturing location	AMK6 6"
Technology	BIP (>6um)
Die finishing back side	CHROMIUM/NICKEL/GOLD
Die size	1770,1850 UM
Bond pad metallization layers	1
Passivation type	SiN
Wafer Testing (EWS) information	
Electrical testing manufacturing location	APEE Asia Pac EWS 0899
Tester	QT200
Test program	LWXXSPXX.CTS vers. W05
Assembly information	
Assembly site	STS (3068)
Package description	SO 08 .15 JEDEC
Molding compound	SUMITOMO EME-G700K
Frame material	SO 8L 94x125 MtBt 4+2+2 NiThPdAgAu(5FT07810)
Die attach process	Ероху
Die attach material	ABLEBOND 8601S-25 10cc/21g Sy EFD(5ST96950)
Die pad size	94x125 mils
Wire bonding process	ASM Eagle60 Thermosonic Bonding
Wires bonding materials/diameters	1.3mil Cu(5XC13779)
Final testing information	
Testing location	STS(3068)
Tester	QT200
Test program	LW2SFH50.CTS

Quality and Reliability

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Package / Moldin Compound	Product Line	Comments
1	6104HX0	GK1121DS	SO8 / SUMITOMO EME- G700K	LW05	QUALIFIC LOT NN
2	6047L64	GK1041Y2	SO8 / SUMITOMO EME- G700K	LW05	1 st CORNER LOT LL
3	6047L64	GK1041Y2	SO8 / SUMITOMO EME- G700K	LW05	2 nd CORNER LOT HH

IMS (Industrial & Multisegment Sector) APM (Analog, Power, MEMs) Group

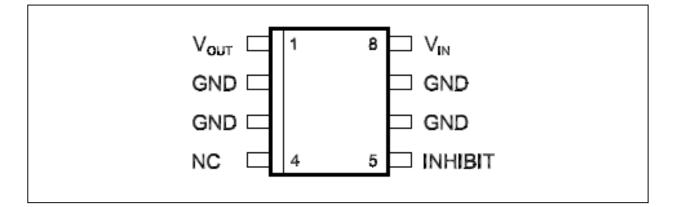
Linear Voltage Regulators & Vref

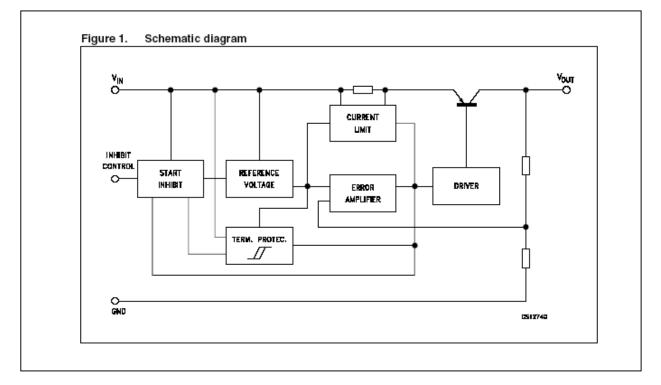
Quality and Reliability

REL-6043-404-W-10

5.2 Test plan and results summary

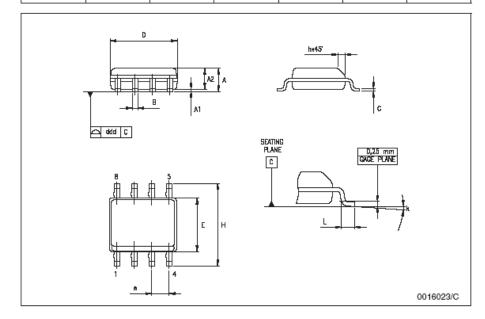
P/N L4931ABD50-TR\$2Z


						Failure/SS				
Test	PC	Std ref.	Conditions		Steps	Lot 1	Lot 2	Lot 3		note
Die Orie	Die Oriented Tests									
					168 H	0/45	0/45	0/45		
HTS	Ν	JESD22 A-103	Tj = 150℃		500 H	0/45	0/45	0/45		
		71100			1000 H	0/45	0/45	0/45		
		_			168 H	0/45	0/45	0/45		
HTS	HTS N JESD22 A-103		$11 - 1/59^{-1}$		500 H	0/45	0/45	0/45		Engineering Evaluation
		71100				0/45	0/45			
Package	Package Oriented Tests									
PC		JESD22 A-113	Drying 24 H @ 125℃ Store 168 H @ Ta=85℃ Rh=85% Oven Reflow @ Tpeak=260℃ 3 times		Final	Pass	Pass	Pass		
AC	Y	JESD22			96 H	0/77	0/77	0/77		
AC	T	A-102	2 Pa=2Atm / Ta=121℃		168 H	0/77	0/77	0/77		
		_			100 cy	0/77	0/77	0/77		
тс	Υ	JESD22 A-104	Ta <i>=</i> -65℃ to 150℃		300 cy	0/77	0/77	0/77		
					500 cy	0/77	0/77	0/77		


6 ANNEXES

6.1 Device details

6.1.1 Pin connection


6.1.2 Block diagram

6.1.3 Package outline/Mechanical data

SO-8 mechanical data							
Dim.		mm.					
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
в	0.33		0.51	0.013		0.020	
с	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
e		1.27			0.050		
н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	8° (max.)						
ddd			0.1			0.04	

Quality and Reliability

6.2 Tests Description

max. temperature allowed by the	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress- voiding.
max. temperature allowed by the ckage materials, sometimes higher than	by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-
e device is submitted to a typical operature profile used for surface unting devices, after a controlled moisture sorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.
e device is stored in saturated steam, at ad and controlled conditions of pressure d temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
e device is submitted to cycled nperature excursions, between a hot and a d chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials
	device is submitted to cycled berature excursions, between a hot and a

REL.6043-251-W-2011

Quality and Reliability

Reliability Report

SO08 1.3 Mils Cu wire Assy:Shenzhen TV: ST890CDR – UD91 line BCD5 Technology

General Information

Product Line Product Description

P/N Product Group Product division Package Silicon Process technology UD91 Power switch with thermal shut down ST890CDT APM *HiRel & Standard Products* SO8 BCD5

Locations						
Wafer fab	Agrate					
Assembly plant	ST Shenzhen					
Reliability Lab	Reliability Lab. Site Catania					
Reliability assessment	Pass					

DOCUMENT INFORMATION

Version	Pages	Prepared by	Approved by	Comment
1.0	9	Giuseppe Failla	Giovanni Presti	First Issue

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

REL.6043-251-W-2011

Quality and Reliability

TABLE OF CONTENTS

1		LICABLE AND REFERENCE DOCUMENTS	
2	GLO	SSARY	3
3	RELI	IABILITY EVALUATION OVERVIEW	3
	3.1	OBJECTIVES	3
	3.2	CONCLUSION	
4	DEV	ICE CHARACTERISTICS	4
	4.1	DEVICE DESCRIPTION	4
	4.2	CONSTRUCTION NOTE	
5	TES	TS RESULTS SUMMARY	
	5.1	TEST VEHICLE	5
	5.2	TEST PLAN AND RESULTS SUMMARY	5
6	ANN	EXES	6
	6.1	DEVICE DETAILS	6
	6.2	TESTS DESCRIPTION	

Quality and Reliability

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Reliability Qualification on SO8 1.3 mils Cu wire in ST Shenzhen.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

Quality and Reliability

<u>4</u> DEVICE CHARACTERISTICS

4.1 Device description

The ST890 is a low voltage, P-channel MOSFET power switch intended for high side load switching applications. This switch operates with inputs from 2.7 V to 5.5 V, making it ideal for both 3 V and 5 V systems. Internal current limiting circuitry protects the input supply against overload. Thermal overload protection limits power dissipation and junction temperatures. The ST890B and ST890C's maximum current limits is 1.2 A. The current limit through the switch is programmed with a resistor from SET to ground. The ST890 is available in SO-8 package.

4.2 Construction note

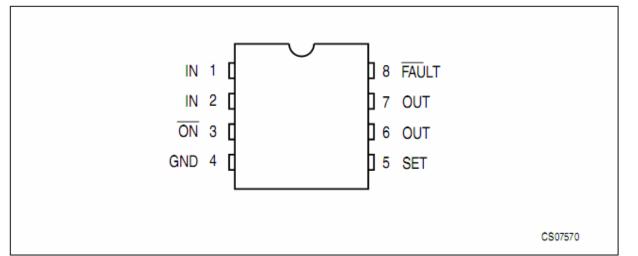
	P/N ST890CDR
Wafer/Die fab. information	
Wafer fab manufacturing location	Agrate
Technology	BCD5
Process family	BCD
Die finishing back side	Lapped silicon
Die size	2.14x1.83mm
Bond pad metallization layers	AlSiCu
Passivation type	Teos + PTeos + SiOn + PIX
Wafer Testing (EWS) information	
Electrical testing manufacturing location	ST Shenzhen
Tester	QT200
Test program	UD91F1 00
Assembly information	
Assembly site	ST Shenzhen
Package description	SO8
Molding compound	Sumitomo G700K
Frame material	Copper
Die attach process	ероху
Die attach material	ABLEBOND 8601S-25
Die pad size	94x125
Wire bonding process	Thermosonic ball bonding
Wires bonding materials/diameters	Copper 1.3 mils
Lead finishing process	preplated
Lead finishing/bump solder material	NiPdAgAu
Substrate supplier for BGA	NA
Final testing information	
Testing location	ST Shenzhen
Tester	QT200
Test program	UD91F1 00

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

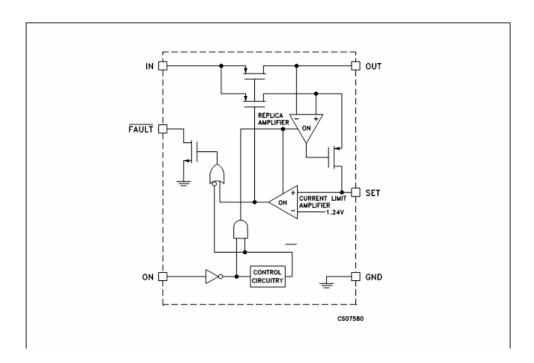
Lot #	Diffusion Lot	Assy Lot	Process/ Package	Product Line	Comments
1	No info available	GK11813FZZ	SO08	UD91	Final

5.2 Test plan and results summary

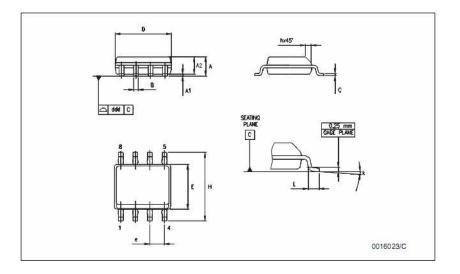

P/N ST890CDR							
Test	РС	Std ref.	Conditions		Steps	Failure/SS	Note
Die Orie	nted	Tests	•	•			
HTS		JESD22 A-103	Ta = 150℃	45	168 h	0/45	
	Ν				500 h	0/45	
					1000 h	0/45	
HTS		JESD22 A-103	Ta = 175℃	45	168 h	0/45	
	Ν				500 h	0/45	
					1000 h	0/45	
HTB		JESD22 A-108	Tj = 125℃; Bias=+6V		168 h	0/77	
	Ν			77	500 h	0/77	
					1000 h	0/77	
Package	e Ori	ented Tests	-	-	-		-
PC		JESD22 A-113	Drying 24 H @ 125℃ Store 168 H @ Ta=85℃ Rh=85% Oven Reflow @ Tpeak=260℃ 3 times	250	Final	Pass	
AC	Y	JESD22 A-102	Pa=2Atm / Ta=121℃		168 h	0/77	
	Y	JESD22 A-104	Ta <i>=</i> -65℃ to 150℃	77	100 cy	0/77	
TC					300 cy	0/77	
					500 cy	0/77	
	Y	JESD22 A-101	Ta = 85℃, RH = 85%, Bias=+5V	77	168 h	0/77	
THB					500 h	0/77	
					1000 h	0/77	

6 ANNEXES

6.1 Device details


6.1.1 Pin connection

Pin N.	Symbol	Name and function		
1, 2	IN	Input P-channel MOSFET source. Bypass IN with a 1 μF capacitor to ground		
3	ON	Active low switch ON input. A logic low turns the switch ON		
4	GND	Ground		
5	SET	Set current limit input. A resistor from SET to GND sets the current limit for the switch. $R_{SET} = 1.38 \times 103 / I_{LIM}$, where I_{LIM} is the desired current limit in Amperes		
6,7 OUT 8 FAULT		Switch output. P-channel MOSFET drain. Bypass OUT wit a 0.1 μF capacitor to ground		
		Fault indicator output. This open drain output goes low when in current limit or when the die temperature exceeds 135°C		


6.1.2 Block diagram

REL.6043-251-W-2011

6.1.3 Package outline/Mechanical data

	millimeters			inches		
Symbol	Min	Тур	Max	Min	Тур	Max
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
Е	3.80		4.00	0.150		0.157
e		1.27			0.050	
н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8°(max)					
ddd			0.1			0.04

6.2 Tests Description

Test name	Description	Purpose		
Die Oriented				
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. Temperature allowed by the package materials, sometimes higher than the max. Operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.		
HTB High Temperature Bias	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition	time. It simulates the devices' operating condition in an accelerated way.		
Package Oriented	-			
PC Preconditioning	The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.	As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.		
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.		
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.		
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2011 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com