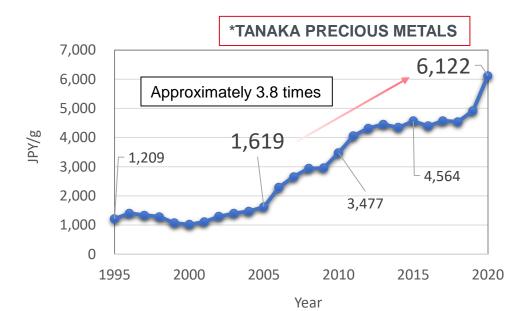


Change the wire material from Au wire to Cu wire (LSI)

Sep, 1st, 2021 LSI Engineering Div. AP Production Headquarters.

© 2021 ROHM Co., Ltd.

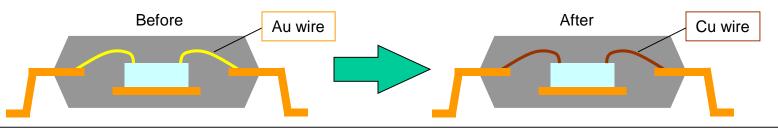
						Confidential	
			Production line of Au wire	Production line of Cu wire	Difference	Verification item	
	Package nam	e (e.g.)	HTSOP-J8	HTSOP-J8	Not application(N/A)	N/A	
	Device n	ame	Refer to device list	Refer to device list	N/A	N/A	
		Factory name	ROHM Electronics Philippines, Inc. (REPI)	Same as on the left			
		Headquarters	Philippine	Same as on the left			
		Personnel quantity	4,457 (As of 2018)	Same as on the left			
	Assembly	Cleanliness	Refer to below	Same as on the left	N/A	N/A	
Factory		(Die bond to Wire bonding)	Class 10,000	Same as on the left			
		(Mold)	Class 10,000	Same as on the left			
	Test	Factory name	ROHM Electronics Philippines, Inc. (REPI)	Same as on the left	N/A	N/A	
	Test	Headquarters	Philippine	Same as on the left	N/A	IN/A	
Man		Assembly	Certified operator by ROHM	Same as on the left	N/A	N/A	
IVIALI	Test		Certified operator by ROHM	Same as on the left	N/A	1977	
		Die bonding	Full-automatic die bonder	Same as on the left			
		Wire bonding	Full-automatic wire bonder	Same as on the left			
		Molding	Full-auto molding machine	Same as on the left			
	Assembly	Tie-bar cut	Full-auto tie-bar cut machine	Same as on the left	N/A	N/A	
Machine		Plating	Full-auto plating machine	Same as on the left			
IVIACIIIIIE		Marking	Full-auto marking machine	Same as on the left			
		Lead forming	Full-auto forming machine	Same as on the left			
	Test	Test handler	Full-auto handler	Same as on the left			
	Test	Tester	Full-auto tester	Same as on the left	N/A	N/A	
	Taping	Taping	Full-auto taping machine	Same as on the left			
		Die bonding	Solder die bonding method Dispensed Ag paste method	Same as on the left			
Method	Assembly	Wire bonding	Ultrasonic Nail-head Thermal Compression bonding	Same as on the left	N/A	N/A	
MELIIUU		Molding	Transfer molding method	Same as on the left	<u> </u>		
		Plating	Electroplating method	Same as on the left			
	Test	Test	Contact method using socket	Same as on the left	N/A	N/A	
Material		Assembly	Please see another attachment	Please see another attachment	Applicable	We'll compare following page.	


Wire type is different.

- [1] Reason for change
- [2] Changing points and production results
- [3] Risk analysis for the change
- [4] Evaluation contents for the changing risk
- [5] List of the evaluation item
- [5-1] Basic evaluation result $1 \sim 5$
- [5-2] Simulation result 11st Bond 22nd Bond
- [5-3] Process margin result 11st Bond 22nd Bond
- [5-4] Reliability test evaluation result
- [5-5] Electrical characteristic result
- [6] Identification method
- [7] Comparison of the quality control item
- [8] Quality control of the bond strength
- [9] The expiration date of Cu wire

[Reason for change]
*Cu wire is more dominant in electrical characteristic, mechanical characteristic, reactivity with the aluminum (Intermetallic compound), conductivity and Wire sweep in MOLD than Au wire.
*To maintain our competitiveness by minimizing our use of gold which the market price continues to rise. This will be a major parts of cost reduction plan.

Average price of gold [JPY/g]


After the following page, we attach contents for change and an evaluation result. For a change, please examine it.

[Changes]

*Change the wire material which connects silicon die and leads to Cu from Au.

*Because there is the fear that halogen in mold resin causes junction corrosion of aluminum/Cu, some packages were changed to the halogen-free resin.

[Manufacturing record]

Our assembly facilities in Thailand and Philippines are both capable of processing copper

Wires. Production started in April 2010 and we have already manufactured more than 1,530 million pcs in most recent one year. The products are used in various customers' applications including car navigation, TV, games, mobile set and other consumer device. Approximately 50% of overall production ratios are copper wire products at present. (this calculation: use wire length)

Apr. 2010a Son. 2015 , Total about 4.262 m

Apr. 2010 \sim Sep. 2015 : Total about 4,362 million pcs

Apr. 2014 \sim Mar. 2015 : Total about 1,530 million pcs

Apr. 2018 ~ Mar. 2021 : Total about 4,277 million pcs

Comparison list of materials properties

Item	Gold Wire	Copper Wire	A merit and demerit of the copper wire	Examination Result		
Electrical resistance	2.2µΩ• cm	1.7μΩ• cm	Reduction of Ron	There is no problem in an electrical characteristic.		
Thermal conductivity	320W/mK	400W/mK	Higher thermal conductivity of package	There is no problem in an exothermal.		
Ultimate tensil strength	100MPa	210MPa	Reduction of wire sweep	The wire sweep rate is equal.		
Reaction Rate for IMC Formation w/AI @150°C	1.1×10-14 cm2/s	1.9×10-16 cm2/s	Lower late for Intermetallic compound formation	The kirkendall void does not occur in 4,000 hours either.		
Hardness (Young's modulus)	78GPa	130GPa	Higher energy (Ultra sonic and Force) for bonding	By the bond profile for exclusive use of the copper wire, we do the limit evaluation of each parameter. We decide a production margin by the result.		
Specific gravity	19.3g/cm3	8.96g/cm3	Lightweighting of the package	There is no problem to package weight.		
Coefficient of thermal expansion	14.2ppm/K	16.5ppm/K	Same	By the evaluation result of the TCY examination, there is no problem to coefficient of thermal expansion.		
	Not		Before use: Wire storage and the expiration date	Before use: By an evaluation result, there is no problem.		
The oxidation		Formation of	Using: Control of gas flow quantity and the density	Using: By an evaluation result, there is no problem.		
and corrosion	oxide layer	oxide layer	After use: Reliability examination under the water environment	After use: By an evaluation result, there is no problem.		
	oxide layer		***Elucidation of the corrosion mechanism	n with the impurities element of resin		

The Cu wire is more dominant for an electrical characteristic and a mechanical characteristic than a Au wire. We take measures of the corrosion by the elucidation of the corrosion mechanism and experiment of the processing point.

DPREM work choot	(Design Review Based on Failure Mode)	
DRBEW WORK Sheet	Usesign Review Based on Failure Mode	

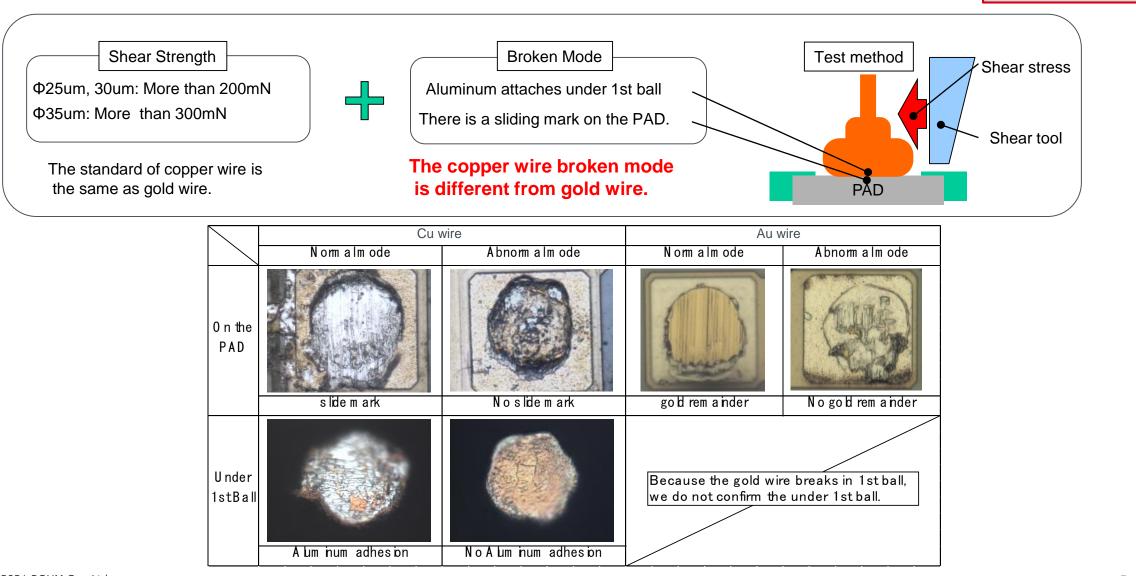
20	BFM-15 5/6/22 edition	2	terial_change_	of_bonding_wir		Motoharu Concerne	Haga d people in package devel	opment dep	artment							© 0	Solved Sure prospect On evaluation (probably good)		On evaluation Not yet deal w NG
	>				Materials for con change	icern about	How the materials are o			Counterme	asures in order to remo	ve the concern		Reco	mmended reaction (as a r	esult of DF	BFM)		
Function	/ Liobau		ange / Modificatio Purpose of them	n	Effect on the cmponent (Failure mode)	Other materials (DRBFM)	Factor / Cause	Other factor (DRBFM)	Effect on customer	Designe	Evaluation	Production	Item which should be reflected in design from DRBFM	In-charge / Dead line	Item which should be reflected in evaluation from DRBFM	In-charge / Dead line	Item which should be reflected in production from DRBFM	In-charge / Dead line	Results of countermeasur
		Material property	Lower electrical resistance than Au	None purpose	Poor characteristics		Breakdown of circuit with overcurrent		Disabled	-	Property comprison of Au and Cu	-	-	-	Each device property was satisfied	•	-	-	Property confirma of Au and Cu
			Higher heat conduction than Au	None purpose	Poor characteristics		Characteristic variation due to change of heat radiation		Disabled	-	Property comprison of Au and Cu	-	-	-	Each device property was satisfied	•	-	-	Property confirma of Au and Cu
			Higher tensile strength than Au	None purpose	1st open		Stress on 1st ball during loop formation		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
			Less metal diffusion with Al than Au	None purpose	1st open due to lost contact		Decline bond strength due to lack of inter metalic formation		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
			Harder than Au	None purpose	Short due to under PAD crack		Increase of damage to PAD		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
			Higher thernmal expansivity than Au	None purpose	1st open		1st neck cut by themal cycle		Disabled	-	Solder heat-proof test and temperature cycling test	-	-	I	Pass temperature cycle test, no problem with PKG inside investigation	•	-	-	Carrying out o reliability test
					2nd open		2nd crescent cut by themal cycle		Disabled	-	Solder heat-proof test and temperature cycling test	-	-	-	Pass temperature cycle test, no problem with PKG inside investigation	•	-	-	Carrying out o reliability test
			More easily oxidized than Au	None purpose	1st open due to lost contact		Decline of bond strength due to oxide film between wire and PAD		Disabled	-	Margin evaluation of initial ball formation	Production within the margin of gas flow and concentration	-	-	Margin was checked	•	Machines stop automaticaly when gas flow or concentration is abnormal	٠	Clarification of parameter for ini ball formation
					2nd open due to lost contact		Decline of bond strength due to oxide film between wire and lead		Disabled	-	Matrix evaluaton of storage period vs US	Production under period control after opening nylon bag	-	-	Margin was checked	•	Machines stop automaticaly when gas flow or concentration is abnormal	•	Clarification of pe limit in producti
		Process	Bonding profile	Harder wire	Short due to under PAD crack		Thin top Al		Disabled	Limitation of top Al thickness thicker than 1.3um	-	-	Device lomation	•	-	-	-	-	Limitation of top thickness thicker 1.3um
inner lead	Cu				Short due to under PAD crack		Increase of damage to PAD due to overmuch US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
and the	rom Au to				1st open due to lost contact		Decline bond strength due to lack of US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
the chip	change fro		Use of forming gus	Antioxidant during electric spark	1st open due to lost contact		Decline of bond strength due to oxide film between wire and PAD		Disabled	-	Margin evaluation of initial ball formation	Production within the margin of gas flow and concentration	-	-	Margin was checked	•	Machines stop automaticaly when gas flow or concentration is abnormal	•	Clarification of parameter for ini ball formation
between	Material cl		Capillary material	Improvement of wear resistance	Short due to under PAD crack		Increase of damage to PAD due to overmuch US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked for material change sample	•	Specific parameter only can be adjusted	•	be adjusted in
Junction	~				1st open due to lost contact		Decline bond strength due to lack of US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked for material change sample	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
					2nd open due to lost contact		Decline of bond strength due to lack of US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked for material change sample	•	Specific parameter only can be adjusted	•	parameter which be adjusted in
		Appearance	Ball thicness / 1~2um thicker	Capillary dimensions change caused	Short due to under PAD crack		Increase of damage to PAD due to overmuch US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Ball thickness has no influence on bond strength	•	Specific parameter only can be adjusted	•	No problem about 2um thickness cha
				by making process limitation	1st open due to lost contact		Decline bond strength due to lack of US		Disabled	-	Matrix evaluaton of Force vs US	Production within the setup margin	-	-	Margin was checked	•	Specific parameter only can be adjusted	٠	parameter which be adjusted in
			Wire diameter ※Depend on original Au wire	Limitation Due to Cu wire lineup	Poor characteristics		Difference of electrical resistance due to changin wire diameter		Disabled	-	Property comprison of Au and Cu	-	-	-	Each device property was satisfied	•	-	-	Property confirms of Au and Cu
			Wire sweep ratio	None purpose	Short due to wire touch		Short due to bigger wire sweep than Au wire		Disabled	-	Confirmation of molding parameter	Production within the setup margin	-	-	Wire sweep ratio is equal to Au	•	Same mold parrameter has no problem	٠	Current mold parameter has r problem
		Process control	Capillary life	Bonding profile change	Short due to under PAD crack		Over US caused by abnormal capillary tip shape		Disabled	-	Capillary life evaluation	Life control and production within the setup margin	-	-	Life was decided	•	Machine stop automaticaly when capillary life is ended	•	Clarification of capillary life
					1st and 2nd open due to lost contact		Lack of US caused by abnormal capillary tip shape		Disabled	-	Capillary life evaluation	Life control and production within the setup margin	-	-	Life was decided	•	Machine stop automaticaly when capillary life is ended	•	Clarification of capillary life
			Wire life after opening nylon bag		1st and 2nd open due to lost contact		Decrease of bond strength due to oxide film between wire and PAD or lead		Disabled	-	Matrix evaluaton of storage period vs US	Production under period control after opening nylon bag	-	-	Margin was checked	•	Machine stop automaticaly when gas flow or concentration is abnormal	•	Clarification of pe limit in producti
			Packing specification of wire	More easily oxidized than Au	1st and 2nd open due to lost contact		Decrease of bond strength due to oxide film between wire and PAD or lead		Disabled	-	Surface analysis of unopened wire	-	-	-	oxidation and sulfurization after 2years	•	-	-	Using special ny bag and packing s gel
			Shear mode / No wire remain after shear test	None purpose	1st open due to lost contact		Decline bond strength due to lack of US		Disabled	-	Matrix evaluaton of Force vs US	-	-	-	Slide mark on Pad / Al remain on ball backside	•	-	-	Clarification o standard of she mode

For an extraction risk, we experiment on validity by the evaluation after the following page.

①Basic evaluation

	lte m	M easuring m ach ine	Criterion		
	S trength com parison	SheartestM /C	More than Cp: 1.33		
1stBallShear	Break m ode	Microscope(X200)	【R eference①】		
	com parison				
	S trength com parison	PulltestM /C	More than Cp: 1.33		
W ire pulltest	Break m ode	Microscope(X200)			
	com parison		【R eference②】		
Peeltest	Break m ode	Microscope(X200)			
	com parison				
UnderPAD Crack		Microscope(X500)	【R eference③】		
Wiresweep		X-rays m ach ne	Less than 10%		

②Reliability test

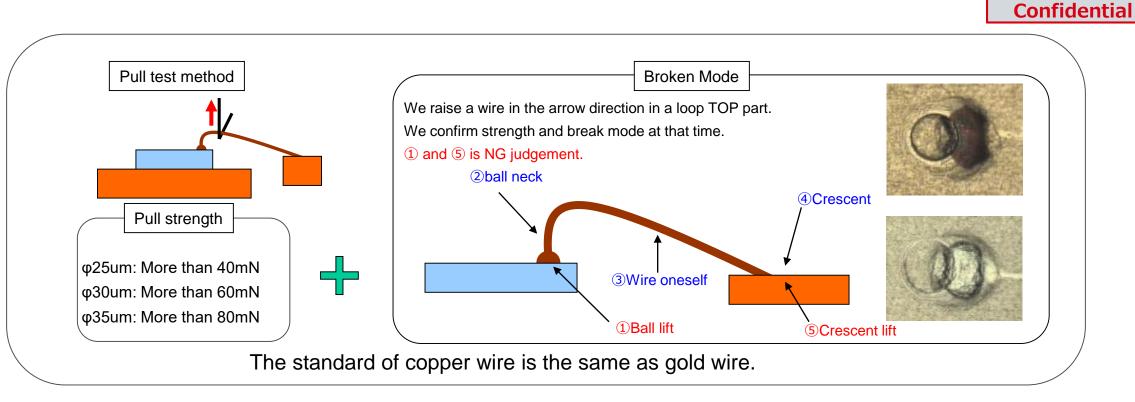

Item	TestC ond ition	Judgm enttm e	Amount(Min)	Criterion	
R esistance to so dering heat	Level1 or 3	W arranty condition every package type	22pcs 以Lot	Electricalcharacteristic SAT Øelem ination)	
H ighly acceleated stress test	130°C/85% Bias	192h	22pcs ×3Lot	Electrical characteristic	
P ressure C ooker	121°C/100%	192h	22pcs ×3Lot	E lectrica I characteristic	
Tem perature cycling test	150°C/-65°C 30m in/1Cycle	500cyc	22pcs XLot	E ectrical characteristic	
H igh tem perature storage test	150°C keep	2,000h	22pcs 以Lot	Electrical characteristic	

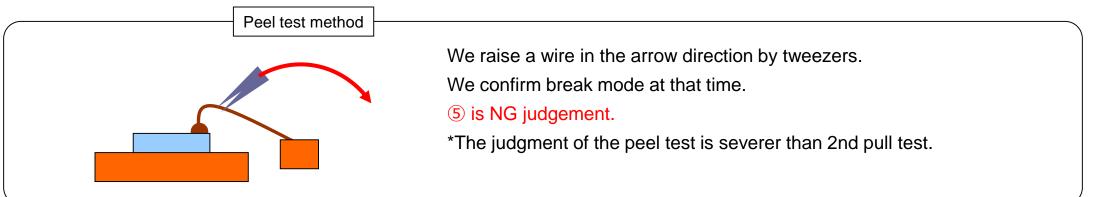
[Reference④] Corrosion mechanism

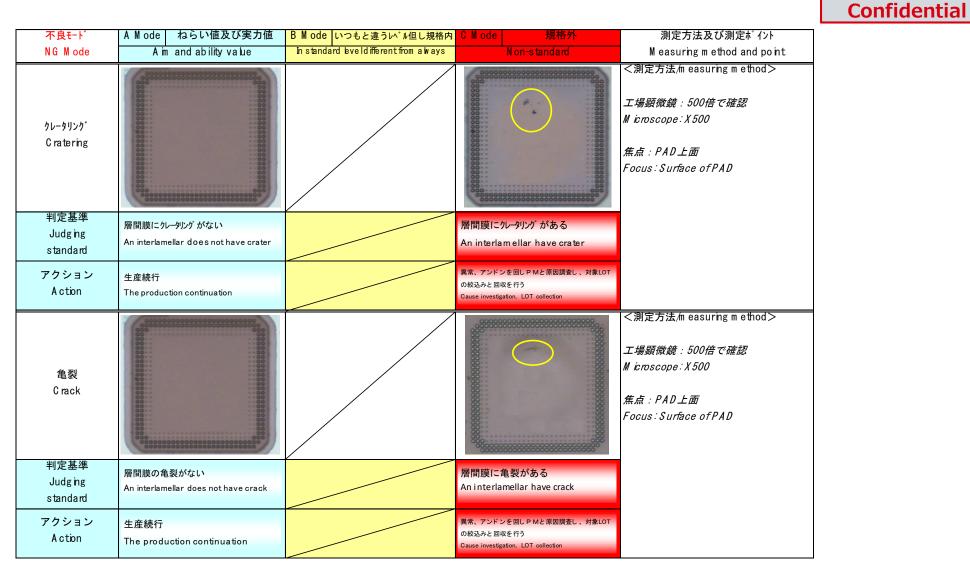
[Reference $(5 \sim 9)$] 1st bonding confirmation after mold resin de-cap

We judged that a change was possible by confirming the item mentioned above.

[Reference①] Shear test Criteria



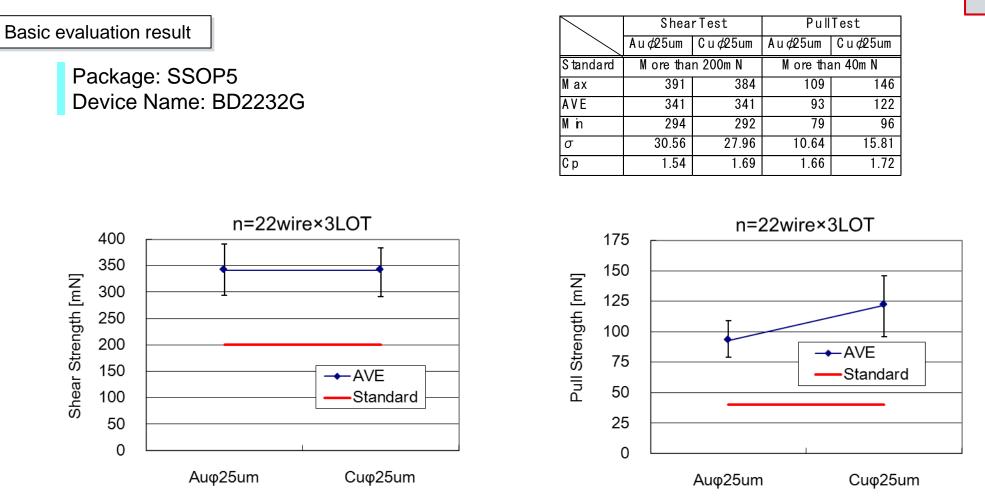

© 2021 ROHM Co., Ltd.


Confidential

The standard of Cu wire is the same as Au wire.

[5] List of the evaluation item

Confidential

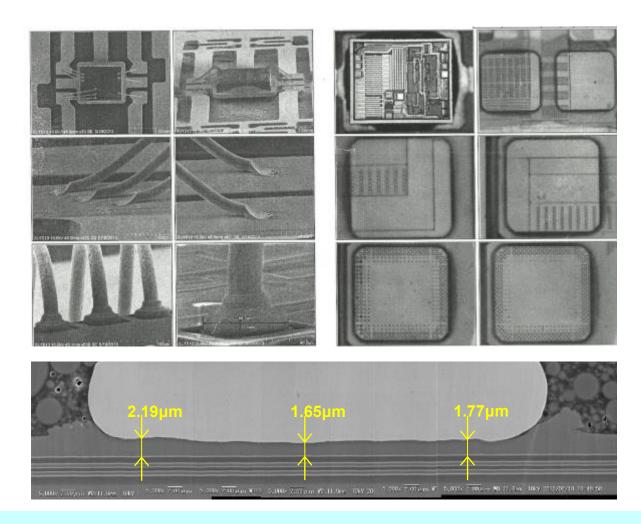

		POWER series	SOP series	HTSSOP series	Q FP series	QFN series
		T0 252-3	S 0 P 8	HTSS0P-A44/B20	V Q F P 48C	V Q F N 024V 4040
R epresentative package type		6.5102 51-0,2 51-0,2 0.520.1 0.520.	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		20402 70401 70401 20402 70401 10407 12 110 110 110 110 110 110 110 110 110	
		0.65 0.5±0.1 0.75 2.3±0.2 2.3±0.2 1.0±0.2	H=1.71Max.			
		Judgm ent	Judgm ent	Judgm ent	Judgm ent	Judgm ent
	1stballD ia./Thick.	0	0	0	0	0
۲ ۲	1stballshear test	0	0	0	0	0
eva luation	W ire pulltest	0	0	0	0	0
a lu	Peeltest	0	0	0	0	0
	UnderPAD Crack	0	0	0	0	0
as c	Section analys is	0	0	0	0	0
B	Process condition confirm ation	0	0	0	0	0
	Wire sweep	0	0	0	0	0
st	Resistance to soldering heat	0	0	0	0	0
म	H ighly acceleated stress test	0	0	0	0	0
e liab ility	Pressure Cooker	0	0	0	0	0
eliat	Tem perature cycling test	0	0	0	0	0
Re	H igh tem perature storage test	0	0	0	0	0

We classified packages and, in the representative package, evaluated all items. The result does not have any problem.

[5-1] Basic evaluation result ①

Confidential

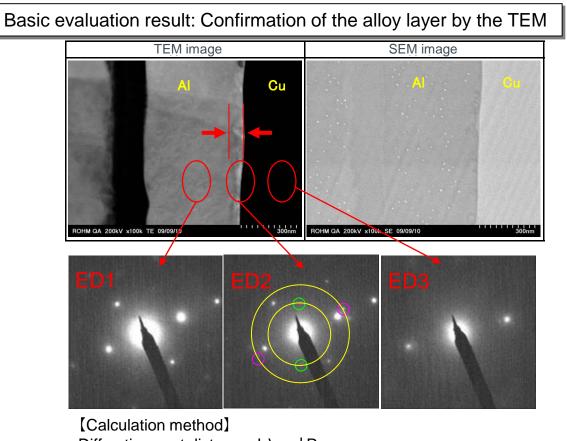
There is not the significant difference in shear strength, wire pull strength about ability for process. The breaking mode does not have any problem, too.


[5-1] Basic evaluation result 2

Confidential

Basic evaluation result *Appearance observation with the SEM *PAD crack observation

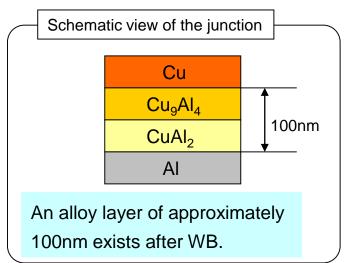
Package: SSOP5 Device Name: BD2232G


Enough aluminum is left right under 1st ball, and a joining state does not have any problem. I show the detailed analysis result of the junction by the TEM on the following page.

Basic evaluation result *1st bond junction

[5-1] Basic evaluation result ③

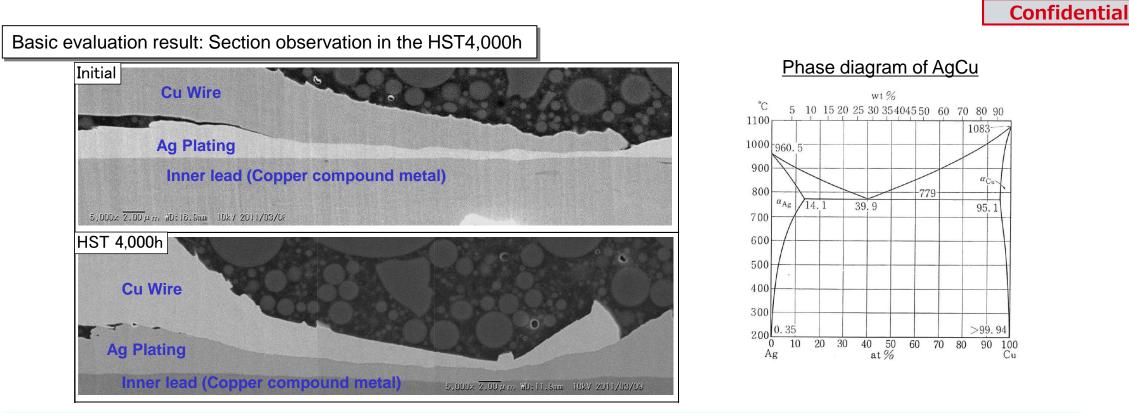
Confidential


Diffraction spot distance: $L\lambda = d R$ L: Camera length, λ : Wavelength of the electron beam D: Diffraction interval, R: Distance between spots Standard: Si(111) $\mathcal{O}L\lambda$: 8.02688×10-12 (m2)

Result: It fitted Lattice constant of $Al_4Cu_9(3\ 0\ 0)$ and $Al_2Cu(2\ 0\ 0)$.

Lattice constant

Green	Lattice spacing (Å)				
Gleen	2.94(2.80~	3.09)			
Cu9Al4	2.9	300			
CuAl2	3.0335	200			
CuAl	2.83	202			


Pink	Lattice spaci			
	1.89(1.80-	1.99)		
	2.05	330		
Cu9Al4	1.99	331		
Gu9Al4	1.95	420		
	1.9	421		
CuAl2	1.91	310		
04/112	1.9	202		
CuAl	2.023	310		

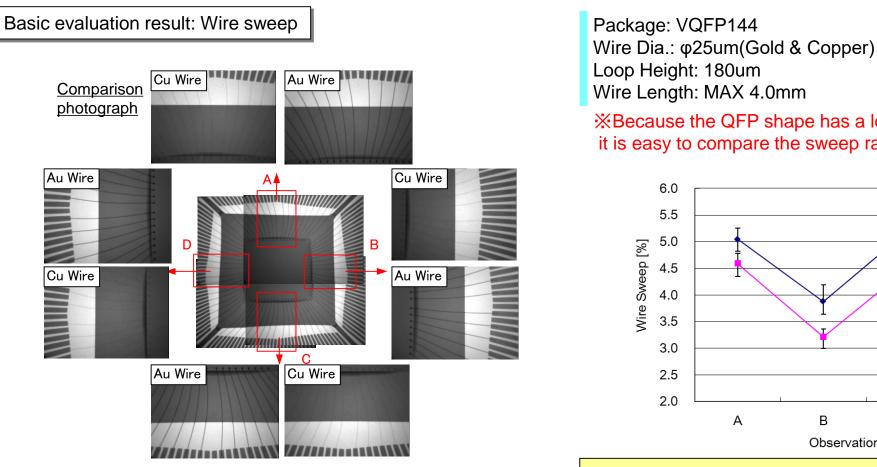
© 2021 ROHM Co., Ltd.

[5-1] Basic evaluation result ④

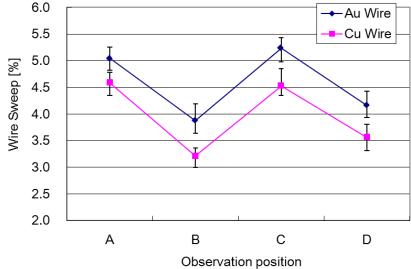
Generally, in the inner lead of IC parts, there is Ag plating on the Cu frame.

Thus, the Cu wire joins it to an Ag plating. Ag and Cu show a eutectic reaction in the phase diagram.

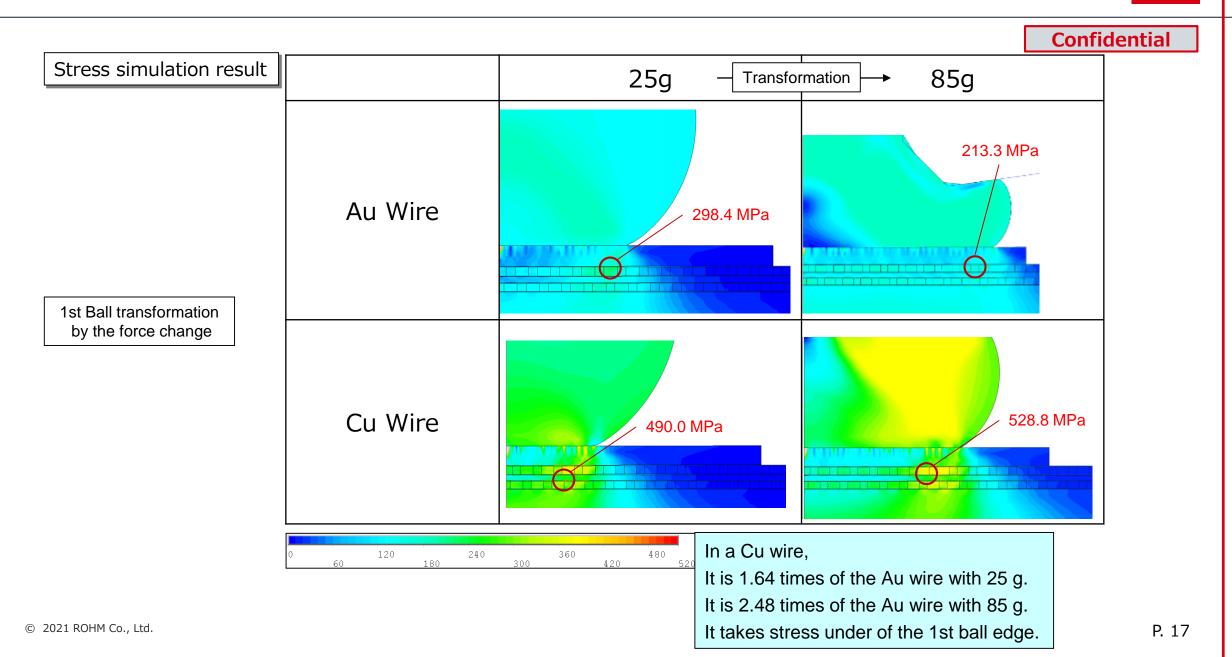
For example, the compound is not formed in this temperature or less because the melting point (eutectic point) is around 750 degrees.


Thus, the joining of Ag-Cu is stable as above even after HST test (150 degrees 4,000h).

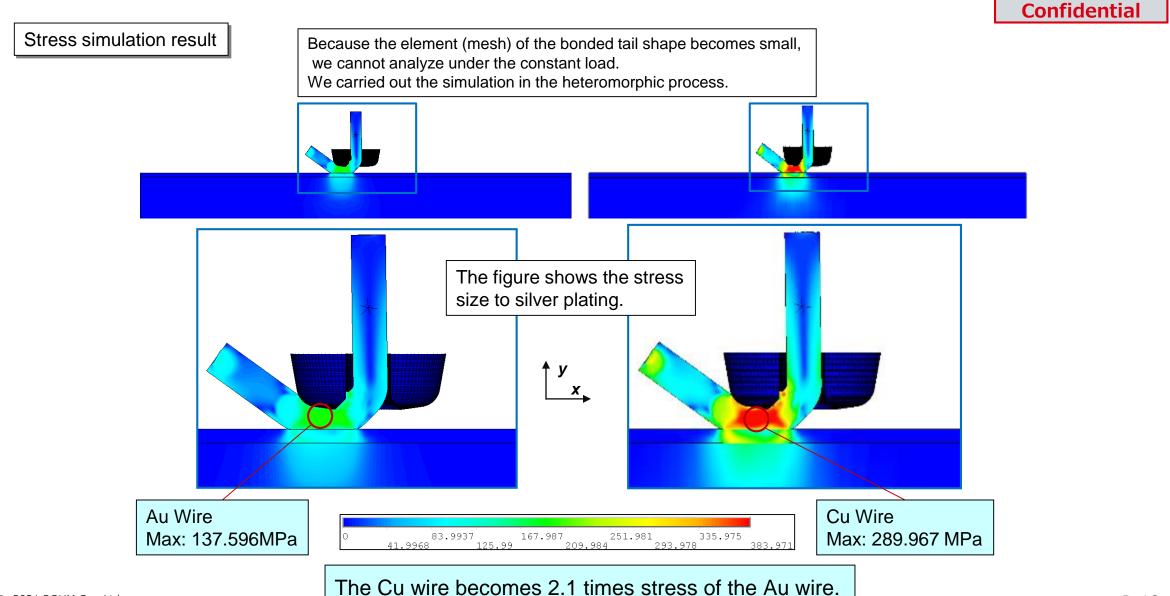
Because the joining of Ag-Cu does not have a compound, there does not corrode in HAST or PCT.


© 2021 ROHM Co., Ltd.

Wire Length: MAX 4.0mm *Because the QFP shape has a long wire, it is easy to compare the sweep ratio. n=22wire×3LOT

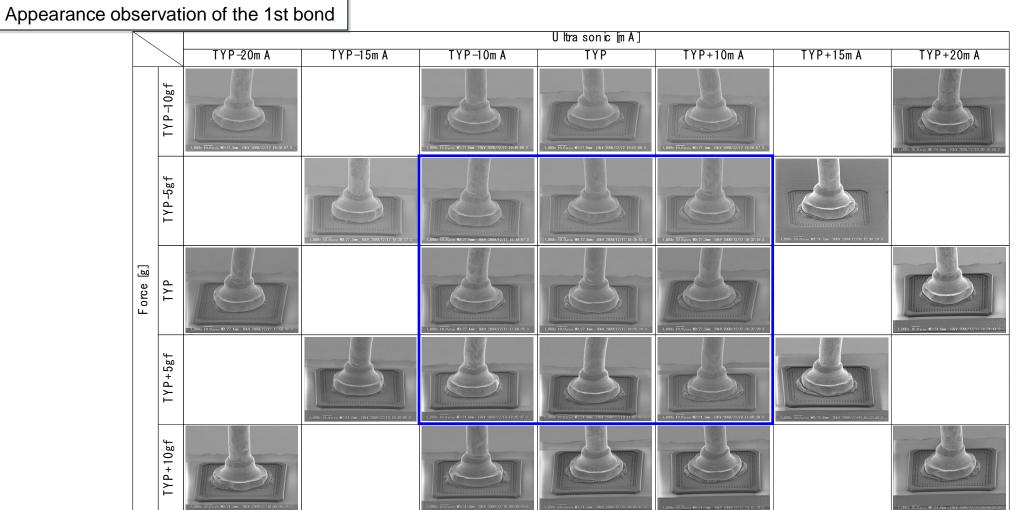


In the same X-rays observation condition (the current & voltage), it becomes hard to see some copper wires.


It meet the standard within 10% of wire sweep rates, and there is not the significant difference.

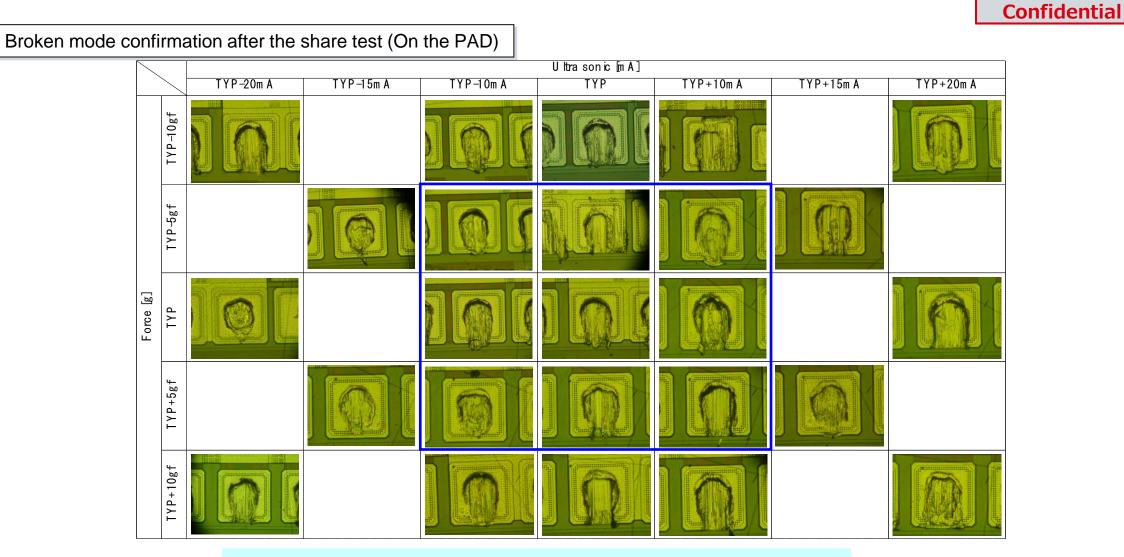
[5-2] Simulation result ①

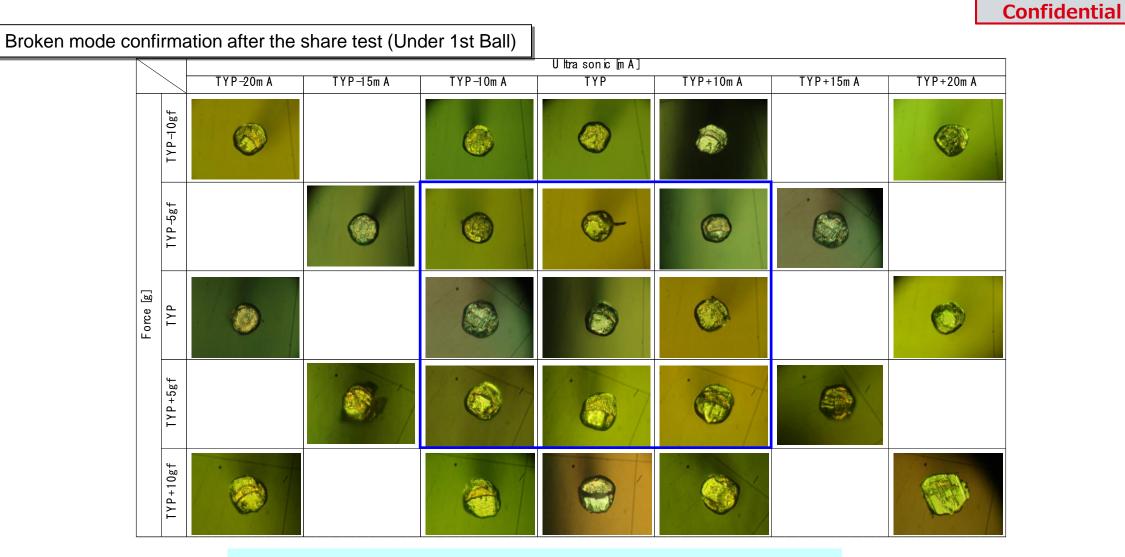
Matrix evaluation result of the 1st bond


Package: VQFN020V4040 Device Name: BD9141MUV Copper Wire Dia.: 30um

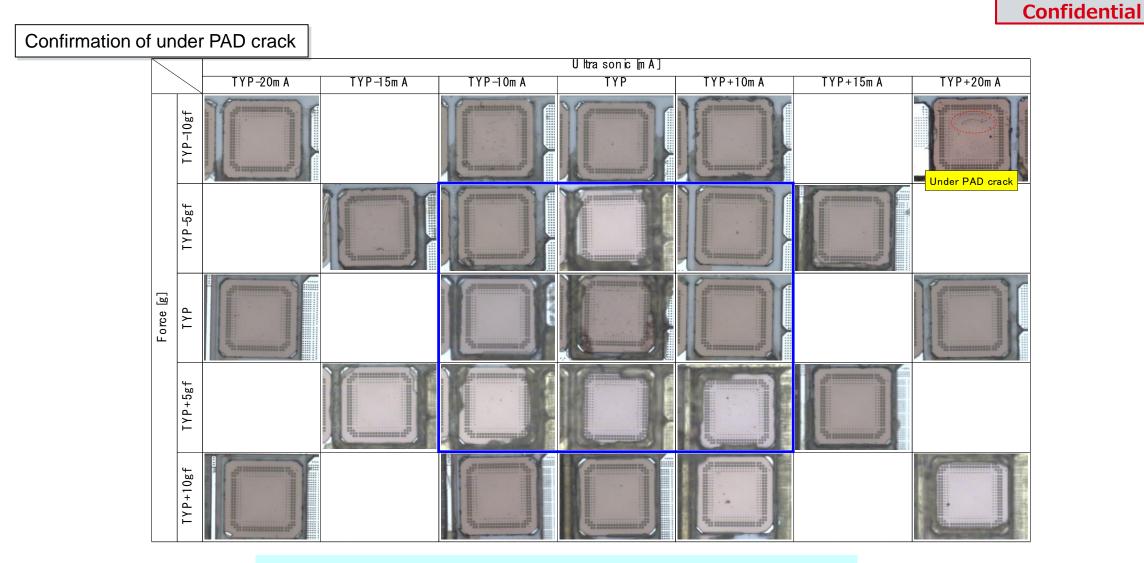
Production margin

<u> </u>					U	ltra sonic [r	A]		
			TYP-20m A	TYP-15m A	TYP-10m A	ТҮР	TYP+10m A	TYP+15m A	TYP+20mA
		1stBallS ize	1.92	1.84	1.77	1.75	1.78	1.88	2.01
	gf	ShearStrength (Cpk)	1.68	1.68	1.74	1.96	1.80	1.89	1.76
	-10£	ShearMode PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD
	а.	ShearMode Ballside	0 ⁄66Ball	0 ⁄66B a ll	0 <i>/</i> 66B a II	0 ⁄66Ball	0 ⁄66B a II	0 ⁄66B a II	0,⁄66Ball
	ŢΥ	NSOP(28Wire/NC)	5/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C
		UnderPadCrack	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0/66PAD	0/66PAD	7,66PAD
		1stBallS ize	1.93	1.79	1.79	1.71	1.91	1.98	1.88
	gf	ShearStrength (Cpk)	1.88	1.78	1.69	1.89	1.92	1.85	1.72
	<u> 3</u> С-	ShearMode PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD
	TΥΡ	Shear Mode Ballside	0,⁄66Ball	0.⁄66Ball	0 ⁄66B a II	0 ⁄66B a II	0.⁄66Ball	0 ⁄66B a II	0 ⁄66B a II
	T	NSOP(28Wire/NC)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C
		UnderPadCrack	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0/66PAD
		1stBallS ize	1.70	1.72	1.67	1.91	1.97	1.98	1.88
ය		ShearStrength (Cpk)	1.69	1.69	2.01	1.97	1.77	2.00	1.70
		ShearMode PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0/66PAD
o rce	ŢΥ	ShearMode Ballside	0,⁄66Ball	0,⁄66Ball	0 ⁄66B a II	0 ⁄66B a II	0 ⁄66Ball	0 ⁄66Ball	0 ⁄66B a ll
LÉ.		NSOP(28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C
		UnderPadCrack	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0,66PAD	0/66PAD
		1stBallS ze	1.76	1.92	1.89	1.69	1.75	1.96	1.92
	ß۴	ShearStrength (Cpk)	1.70	1.81	1.93	1.81	1.77	1.87	1.69
	<u></u> +2	ShearM ode PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0,66PAD	0/66PAD
	7	ShearMode Ballside	0,⁄66Ball	0,⁄66Ball	0 ⁄66B a II	0 ⁄66B a II	0 ⁄66Ball	0 ⁄66B a ll	0 ⁄66B a ll
	T	NSOP(28Wire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C
		UnderPadCrack	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0,⁄66PAD	0/66PAD
		1stBallS ze	1.89	1.96	1.75	1.88	1.68	1.89	1.89
	ß۴	ShearStrength (Cpk)	1.71	2.01	1.98	1.92	2.00	1.73	1.99
	-10	ShearM ode PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0/66PAD
		ShearMode Ballside	0/66Ball	0 ⁄66B a II	0 ⁄66B a II	0,⁄66Ball	0 ⁄66B a II	0 ⁄66B a II	0 ⁄66B a II
	ŢΥ	NSOP(28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C
		UnderPadCrack	0/66PAD	0/66PAD	0/66PAD	0,66PAD	0/66PAD	0/66PAD	0/66PAD


In force[g] and US[mA] matrix condition, we confirm it to the range beyond the production margin and decide a final production condition.


There is no abnormality to 1st ball diameter thickness and quantity of aluminum splash.

There is a sliding mark on the PAD, and there is no abnormality.

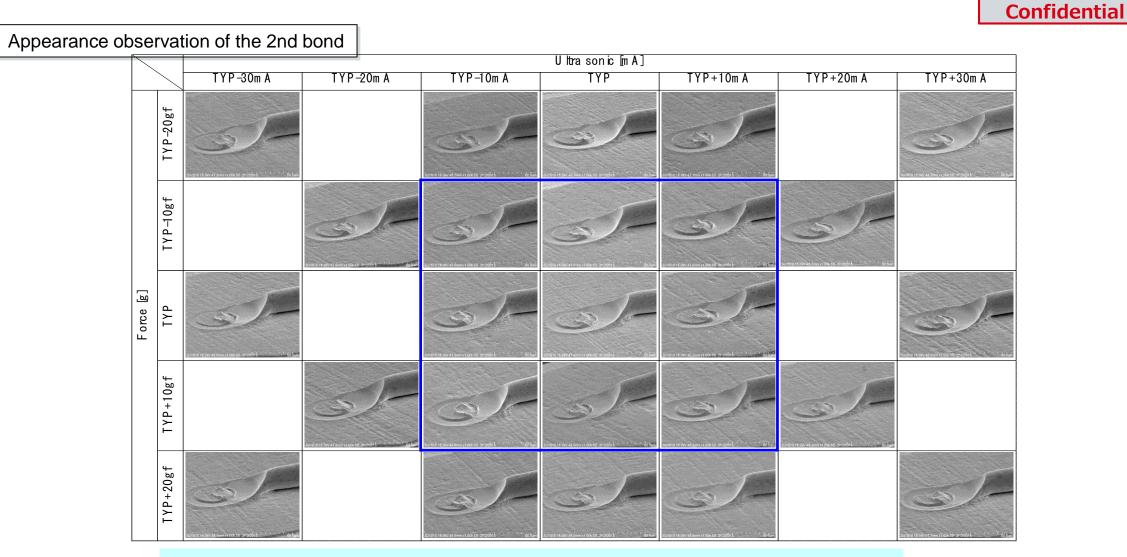


Aluminum attaches under 1st ball, and there is no abnormality.

[5-2] Process margin result ①

In the production margin, there is no under PAD crack.

Matrix evaluation result of the 2nd bond


Package: VQFN020V4040 Device Name: BD9141MUV Copper Wire Dia.: 30um

Production margin

									Confide	ential
					U	ltra sonic [n	1 A]			
			TYP-30mA	TYP-20mA	TYP-10mA	ТҮР	TYP+10m A	TYP+20m A	TYP+30m A	
		PullCP	1.67	1.85	1.76	1.72	1.86	1.69	1.83	
	0gf	PeelMode	0/66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0.⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	P -2(ShortTail (28W ire/1C)	0 /1 92 IC	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	23/1921C	
	ΓΥF	NSOL (28W ire/1C)	3/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	
		Burr of Crescent	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
		PullCP	1.79	1.90	1.77	1.84	1.89	1.68	1.72	
	0gf	PeelM ode	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	Ъ	ShortTail (28W ire/IC)	0/1921C	0/1921C	0 /1 92 LC	0/1921C	0/1921C	0 /1 92 LC	0/1921C	
	TΥF	NSOL (28W ire/1C)	0/1921C	0/1921C	0 /1 92 LC	0/1921C	0/1921C	0 /1 92 LC	0/1921C	
		Burr of Crescent	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
		PullCP	1.80	1.68	1.69	1.67	1.83	1.82	1.88	
20		PeelM ode	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
orce	TΥP	ShortTail (28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0 /1 92 1C	0/1921C	
Fo	ι –	NSOL (28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	
		Burr of Crescent	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	4	PullCP	1.75	1.84	1.84	1.82	1.77	1.79	1.86	
	0 8	PeelM ode	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	P + 1	ShortTail (28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0 /1 92 1C	0/1921C	
	ТΥР	NSOL(28Wire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	
		Burr of Crescent	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	ų	P u II C P	1.82	1.84	1.71	1.76	1.71	1.81	1.82	
	ы 0 8	PeelMode	0.⁄66W ire	0/66W ire	0,⁄66W ire	0/66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	
	P + 2	ShortTail (28W ire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	
	ТΥР	NSOL(28Wire/1C)	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	0/1921C	
		Burr of Crescent	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	0,⁄66W ire	

In force[g] and US[mA] matrix condition, we confirm it to the range beyond the production margin and decide a final production condition.

There is no abnormality without a crack or a wound in the Crescent.

Confirmation of the broken mode by peel test Ultra sonic [m A] TYP-30mA TYP-20m A TYP-10m A ТҮР TYP+10mA TYP+20m A TYP+30m A Der T. ST TYP-20gf TYP-10gf Force [g] TΥΡ TYP+10gf TYP+20gf

Crescent remains on the lead frame, and there is no abnormality.

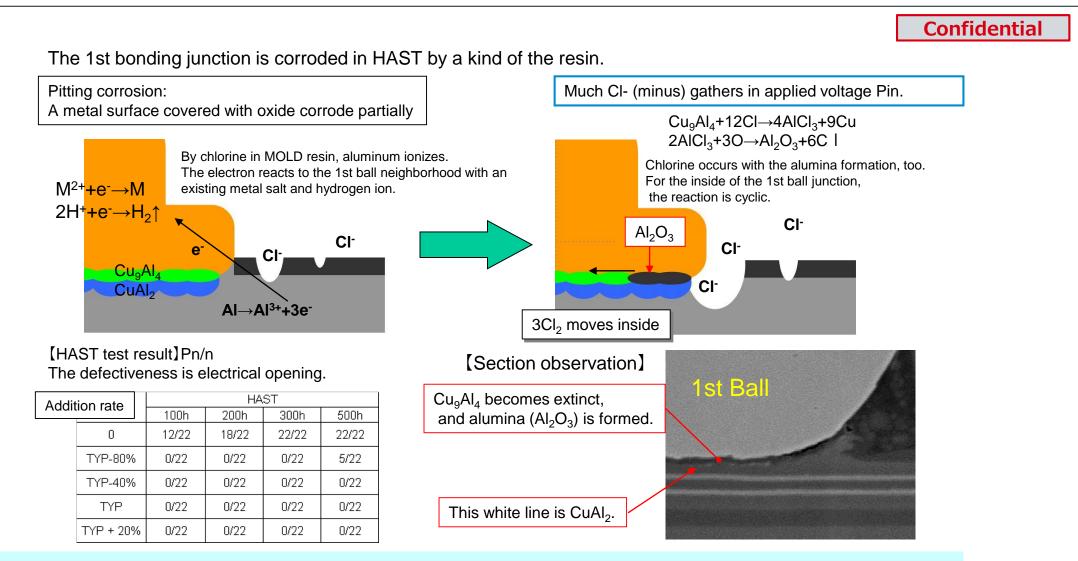
Solder heat resistance	etest				
Package: SOP16			【Result】Pn/n		
· · ·	ion: 85°C/85% 168h(N	Wire materials Initial	Copper wire	Gold wire	
Reflow condition: 3 til Criteria: There is no c	delamination on the Ch	After test	0/22 0/22	0/22 0/22	
	Cu wire	(n=22pcs)	Au wire	(n=22pcs)	
	In itia l	A fter test	In itia l	A ft	ertest
	2398890 * N N U U V N N S 3 8 8 8 7 * ·	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	***************************************	0	
1	, 119,9,7,7,4,2,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1			10000000000	
		6 2 0 0 0			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
e e e e e e e e e e e e e e e e e e e				6 4 6	
27			· ISANGARARARA		
، ۱۹۹۹ - ۲۰۰۹ اللهر - ۲۰	C C C C C C C C C C C C C C C C C C C		be certain cer	o o o	0
				5 D 6	
14 A					
	,			0 . 008833335	
			0 🖉 e 🛤 e 🛤		
n Sun A	ન્ટ તે કે આ ગળ શેરામ આ પ્રાથમિક છે. છે. છે છે છે છે છે છે છે છે. છે છે માં કે આ પ્રા કે આ પ્રાથમિક	 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		A TANAGO .	

For solder heat resistance, there are not difference between Cu wire Au wire.

[5-4] Reliability test evaluation result

Confidential

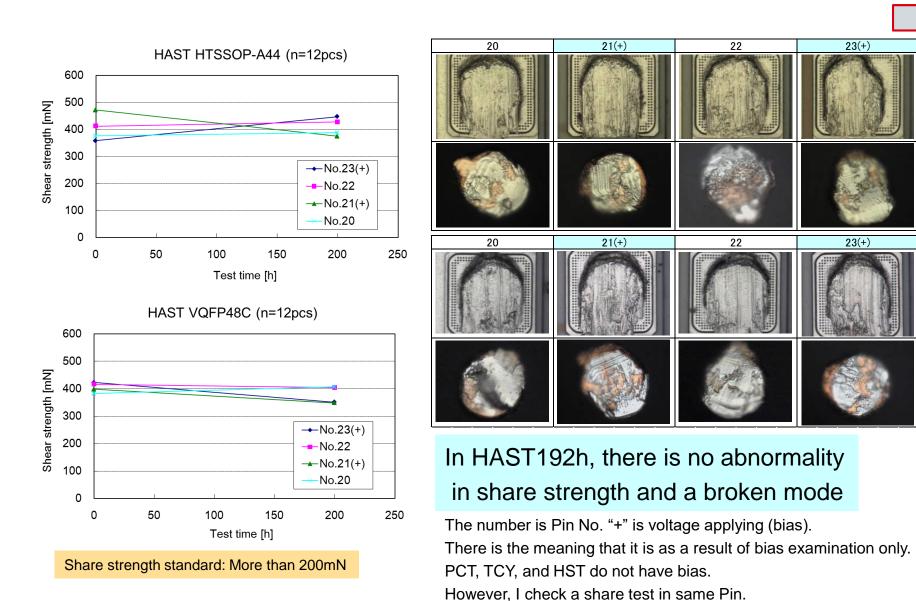
Reliability test result


Criteria: Check with electrical characteristic (Pn/n)

<u>Cu</u> wire						Au wire						
TestC ond ition	Package	100	192				TestC ond ition	Package	100	192		
	H T S S O P –A 44	0/66pcs	0/66pcs					HTSSOP-A44	0/66pcs	0/66pcs		
HAST	HTSSOP-B20	0/66pcs	0/66pcs				HAST	HTSSOP-B20	0/66pcs	0/66pcs		
130°C/85%	V Q F P 48C	0/66pcs	0/66pcs					V Q F P 48C	0/66pcs	0/66pcs		
130 C/85% Bias	V Q F N 024V 4040	0/66pcs	0/66pcs	İ			130°C,∕85% Bias	VQ FN 024V 4040	0/66pcs	0/66pcs		
DNS	S 0 P 8	0/66pcs	0/66pcs	İ			DUS	S 0 P 8	0/66pcs	0/66pcs		
	T0 252-3	0/66pcs	0/66pcs	İ				T0 252–3	0/66pcs	0/66pcs		
TestC ond ition	Package	100	192				TestC ond ition	Package	100	192	1	
	H T S S O P – A 44	0/66pcs	0/66pcs					HTSSOP-A44	0 <i>/</i> 66pcs			
	HTSSOP-B20	0/66pcs	0/66pcs					HTSSOP-B20	0/66pcs	0/66pcs		
PCT	V Q F P 48C	0/66pcs	0/66pcs				PCT	V Q F P 48C	0/66pcs	0/66pcs		
121°C/100%	V Q F N 024V 4040	0/66pcs	0/66pcs				121°C/100%	V Q F N 024V 4040	0/66pcs	0/66pcs		
	S 0 P 8	0/66pcs	0/66pcs				S 0 P 8	0/66pcs	0/66pcs			
	T0 252-3	0/66pcs	0/66pcs				TO 252-3	0/66pcs	0/66pcs			
TestC ond ition	Package	100	300	500			TestC ond ition	Package	100	300	500	I
	H T S S O P – A 44	0/66pcs	0/66pcs	0/66pcs			TCY 150°C∕65°C (30m in/1cyc) -	H T S S O P – A 44	0/66pcs	0/66pcs	0/66pcs	1
ТСҮ	H T S S O P -B 20	0/66pcs	0/66pcs	0/66pcs				HTSSOP-B20	0/66pcs	0/66pcs	0/66pcs	1
150°C ∕-65°C	V Q F P 48C	0/66pcs	0/66pcs	0/66pcs				V Q F P 48C	0/66pcs	0/66pcs	0/66pcs	1
(30m in/1cyc)	V Q F N 024V 4040	0/66pcs	0/66pcs	0/66pcs				V Q F N 024V 4040	0/66pcs	0/66pcs	0/66pcs	1
	S 0 P 8	0/66pcs	0/66pcs	0/66pcs				S 0 P 8	0/66pcs	0/66pcs	0/66pcs	1
	T0 252-3	0/66pcs	0/66pcs	0/66pcs				TO 252-3	0/66pcs	0/66pcs	0/66pcs]
TestC ond ition	Package	240	500	1,000	2,000		TestC ond ition	Package	240	500	1,000	2,000
	H T S S O P – A 44	0/66pcs		0/66pcs	0/66pcs			H T S S O P – A 44	0/66pcs		0/66pcs	0/66pcs
	H T S S O P -B 20		0/66pcs			HTSSOP-B20	0/66pcs	0/66pcs	0/66pcs	0/66pcs		
HST	V Q F P 48C		pcs 0/66pcs		H S T	V Q F P 48C	0/66pcs	0/66pcs	0/66pcs	0/66pcs		
Keep 150°C	V Q F N 024V 4040	0/66pcs	0/66pcs	0/66pcs	0/66pcs		Keep 150℃	V Q F N 024V 4040	0/66pcs	0/66pcs	0/66pcs	0/66pcs
	S 0 P 8	0/66pcs	0/66pcs	0/66pcs	0/66pcs			S 0 P 8	0/66pcs	0/66pcs	0/66pcs	0/66pcs
	T0 252-3	0/66pcs	0/66pcs	0/66pcs	0/66pcs			T0 252–3	0/66pcs	0/66pcs	0/66pcs	0/66pcs

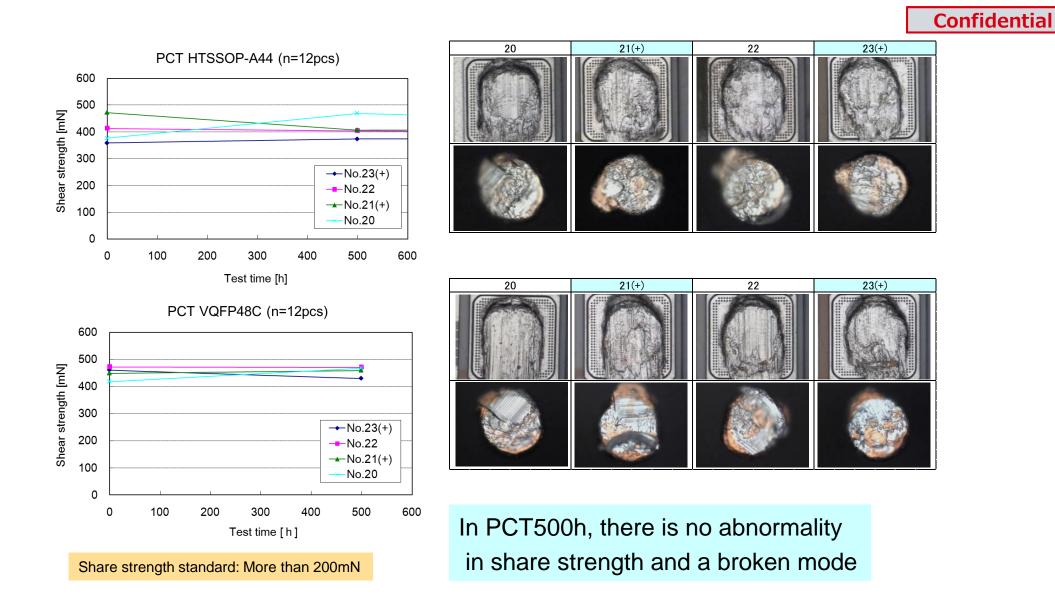
There is no problem in both of a Au wire and the Cu wire.

[Reference④]Corrosion mechanism

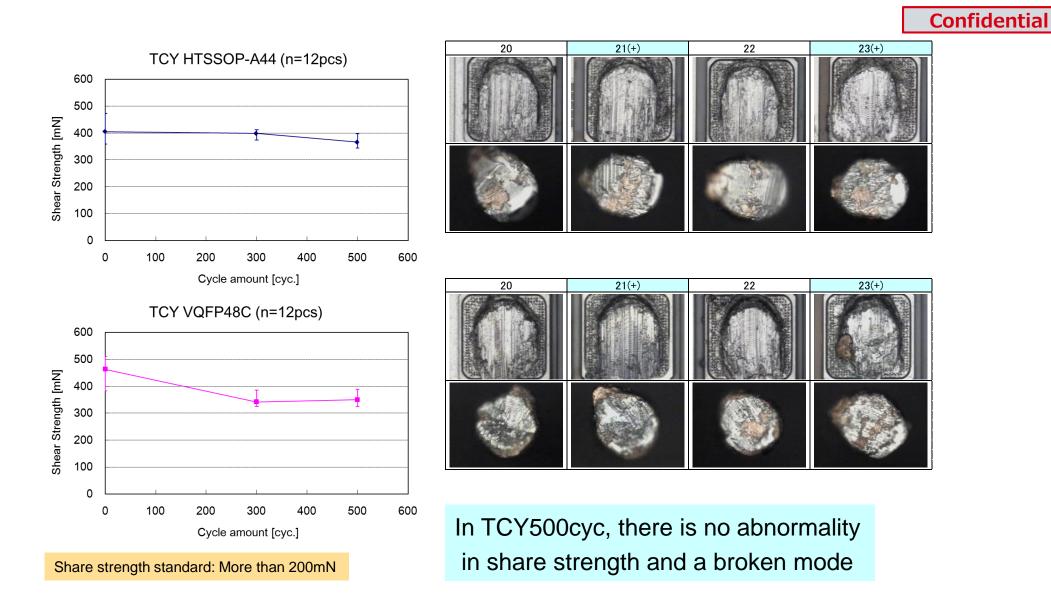


Defectiveness is caused by the additive quantity (ion trapper) like the table mentioned above.

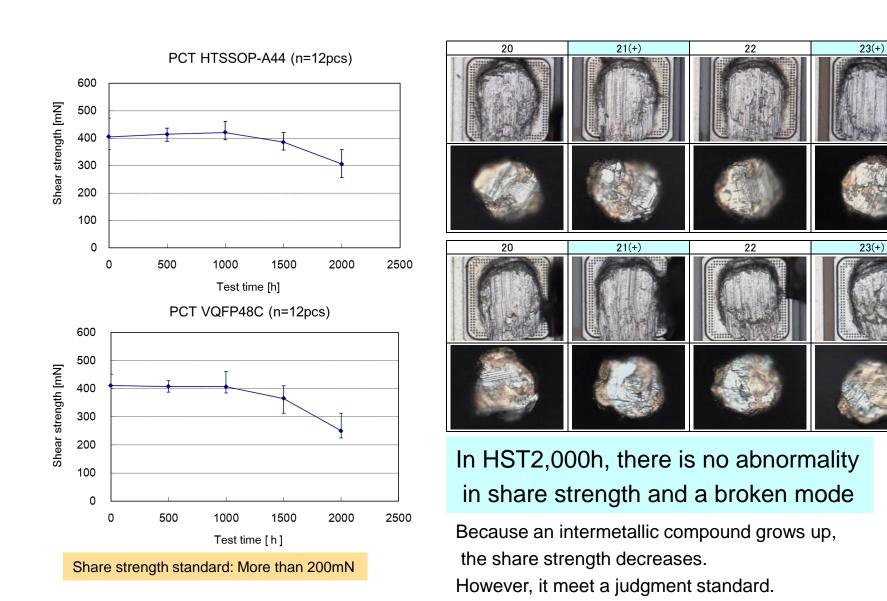
We confirm that there is additive quantity of all mold resin with the most suitable value (TYP less than $\pm 10\%$) on actual HAST.



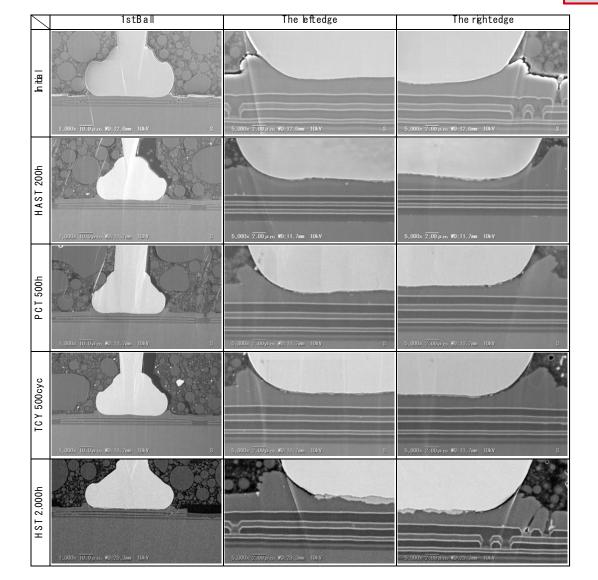
[Reference⑤] Shear strength change (HAST:192h)


[Reference6] Shear strength change (PCT:500h)

[Reference⑦] Shear strength change (TCY:500cyc)



Confidential


[Reference®] Shear strength change (HST:2,000h)

Package: VQFN020V4040 Device Name: BD8305MUV


There is no abnormality in the section joining state of the 1st ball after each reliability. XAn alloy layer (Intermetallic compound) grows up most in HST2,000h.

Confidential

[5-5] Electrical characteristic result ①

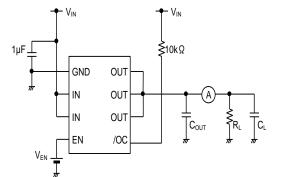
Electrical characteristic

Device Name: BD82065AFJ *change only wire materials with the same device

Item	Sign	0 utside com pany building spec. @ 25°C, 5.0V)			Result		R atio	Unit	M easurem entcondition	Judgm ent
		M 'n.	Typ.	Max.	Cu–wire	Au-wire	1–Au∧Cu [%]			
🗲 lectrica I characteristic			-						Ta=R.T., V _N =5.0V, C N =1 μ F	
0 perating Current	D D	-	110	160	112.4	111.7	0.6	μA	EN=5V,VOUT=0PEN	0
Standby Current	I S T B	-	0.01	5	0.0	0.0	-	μA	EN=OV, VOUT=OPEN	0
EN High inputvoltage	VENH	2.0	-	-	1.51	1.51	0.0	٧		0
EN Low inputvoltage	VENL	–	-	0.8	1.37	1.37	0.1	٧		0
EN inputcurrent	EN	-1.0	0.01	1.0	0.0	0.0	-	μA	V E N = 5V	0
/OC outputLOW voltage	VOCL	-	-	0.5	0.03	0.03	0.0	٧	1/0 C = 0.5m A	0
/0 C output leak current	L0 C	-	0.01	1.0	0.0	0.0	-	μA	V 0 C = 5V	0
/0 C de by tim e	TO C	10	15	20	14.23	14.42	-1.3	ms		0
0 N resistance	RON	-	70	110	72.2	77.2	-6.9	mΩ	DUT=500mA	0
CurrentLimitThreshold	ΠH	1.5	2.4	3.0	1.93	1.96	-1.6	Α		0
Short-circuitcurrent (RMS)	БC	1.1	1.5	2.1	1.34	1.34	0.0	Α	VOUT=GND,CL=47µF	0
0 utputrise tin e	T0 N 1	-	0.8	10	0.45	0.45	-1.8	ms	R L=10 Ω	0
0 utputrise de la y tim e	T0 N 2	-	1.1	20	0.65	0.66	-1.5	ms	R L=10 Ω	0
0 utput fall tim e	T0 FF1	-	5	20	3.08	3.12	-1.4	β	R L=10 Ω	0
0 utput fall de lay tim e	T0FF2	-	10	40	6.64	6.65	-0.1	μs	R L=10 Ω	0
Reverse leak current	LREV	_	-	1	0.0	0.0	-	μA	V O U T = 5.5 V, $V N = 0 V$, $V E N = 0 V$	0
UVLO High Threshold	VTUVH	2.1	2.3	2.5	2.256	2.284	-1.2	٧	VN at the time of a rise	0
UVLO Low Threshold	VTUVL	2.0	2.2	2.4	2.159	2.187	-1.3	٧	VN atthe time of a drop	0

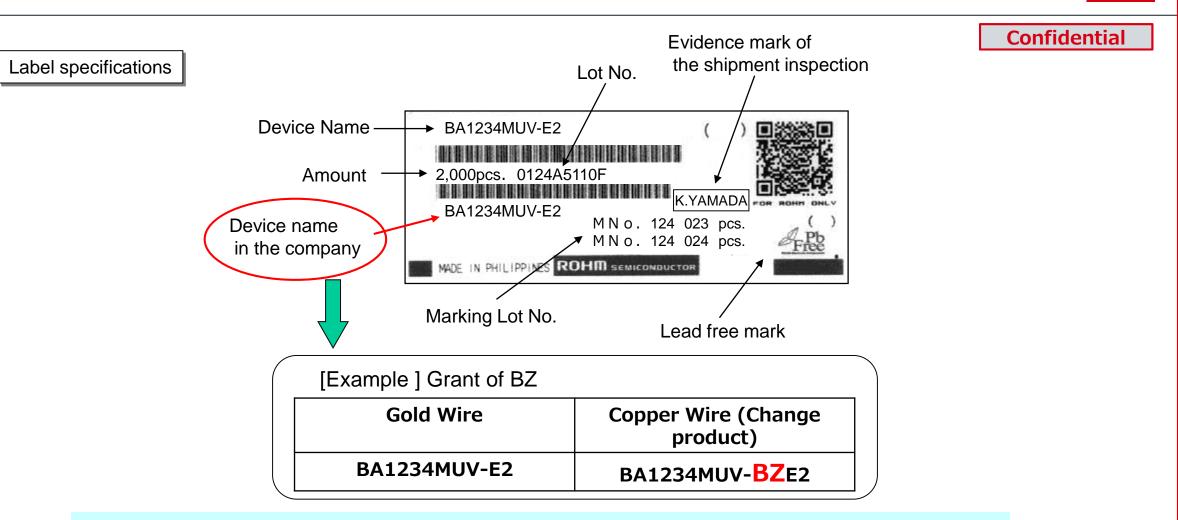
◆ESD Dosis tolerata

HBM: More than 2000V, MM: More than 200V


The ON resistance becomes advantageous.

About other items,

the characteristic change of Au wire and Cu wire is the same.


© 2021 ROHM Co., Ltd.

Evaluation connection diagram

[6] Identification method

The product name does not have the change.

We control it by the change of the device name in the company.

Item 1	Item 2	C ontents					
		Cu wire	Au wire				
	Maker recommendation	Tem perature 10 \sim 30°C, Hum idity Less than 70%	Tem perature 10~30°C, Hum id ity Less than70%				
Materials storage	The expiration date	less than 6 m on ths from a production date	less than 6 m onths from a production date				
		1 week afteropening, Vacuum and Silicage l	The packing bag is unnecessary				
		Tem perature 22 \sim 28 °C, H um id ity Less than 60 %	Tem perature 22~28°C, Hum id ity Less than 60%				
	ROHM controlcondition	less than 6 m on ths from a production date	less than 6 m on ths from a production date				
		1 week afteropening, Vacuum and Silicage I	The packing bag is unnecessary				
	W B finished sam ple	Tem perature 22~28°C, Hum id ity Less than 60%	Tem perature 22~28°C, Hum idity Less than 60%				
	ii b inisileu saii pie	Storage in the plastic case	Storage in the plastic case				
W B m achine control	Forming gas	M ixture ratio ; $H_2 5\%$: $N_2 95\%$					
		Density standard ; H ₂ 4~6%					
		The abnomn aldetection ;	The form ing gas is nonuse				
		G as blenderm ach ine (density control)					
		G as cylinder (inspection results by gas m aker)					
Process control	Exam ination	The forming gas volum e					
	with the Cu–Wire change	0.35 ±0.10L ∕m in	The forming gas is nonuse				
		A am with the flowmetermonitor					
		Capillary life	Capillary life				
	Controlreinforcem ent contents	900,000 Bond	2,520,000 B ond				
		M on tor of the bond am ount	M on itor of the bond am ount				
		The wire expiration date					
	(item /controllevel/frequency)	168 hours after packing opening	The packing bag is unnecessary				
		Every each LOT confirm sa tin e lin itatstart tin e					
		UnderPAD crack	UnderPAD crack				
		Capillary type change, Device type change	Package type change				
		A IIPAD /c hm p	A IIPAD /c hm p				
	Alum inum splash standard	Satisfied within Pad opening	Satisfied within Pad opening				
Method ofanalysis	Medicinalsolution /	Sharpen resin with a laser decap m achine	Laser decap m achine is unnecessary				
(Resinopening method)	facilities /conditions	—Nitrating acid (room tem perature)					

We clarify the QC control item of a gold wire, the copper wire.

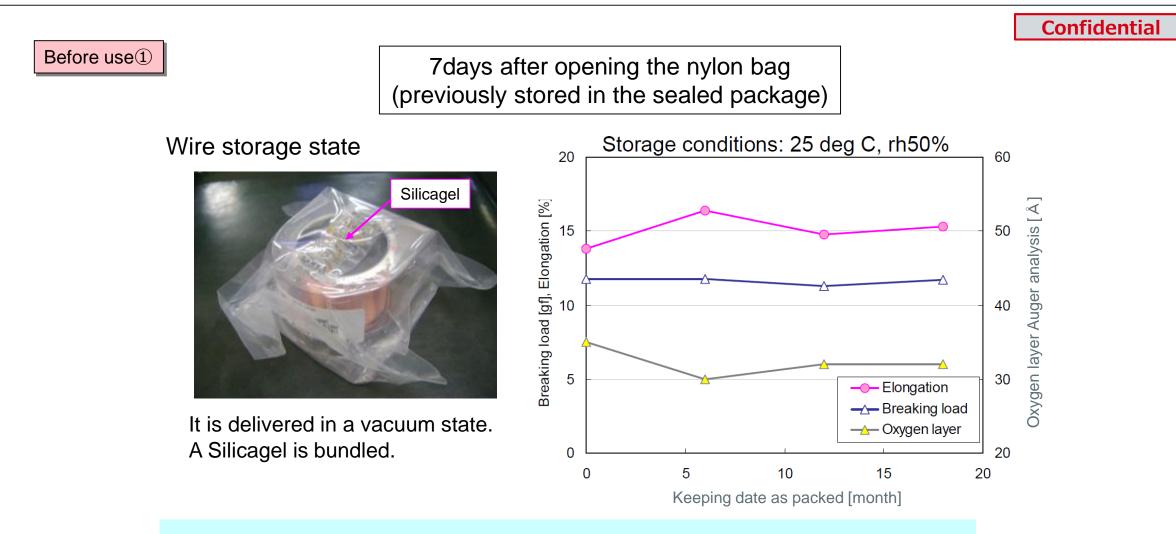
Control item	QC Control Frequency
1st ball shear strength	At the time of Capillary exchange or Device Change : 5wire/chip (all chip/clamp)
Pull strength / Peel mode	At the time of Capillary exchange or Device Change : 5wire/chip (all chip/clamp)

Comparison between wire material LOT and QC control frequency

	Am ountofLOT										
Assy LO T	1 1 1	1 1 1	1 1	1 1	1 1	1 1 1	1 / /				
W ire		10					10				
MaterialLOT		Min.Case)					(Min.Case)				
QC controll	3 3 3				3	3	3				
frequency	🕅 n.Case)	≬ n.Case)	≬n.Case) (M i	h.C ase)	≬n.Cas	e) 🕅 n.Cas	se)			

About the wire,

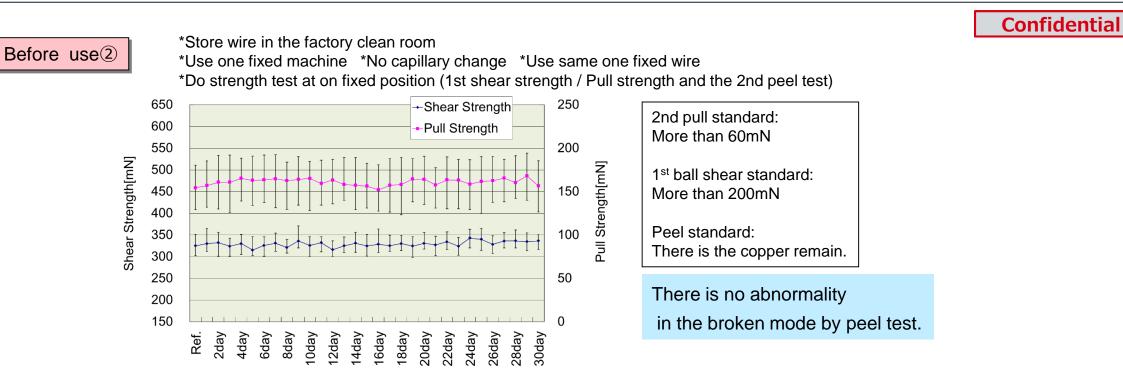
we inspect the delivery specifications from wire maker for the factory delivery.

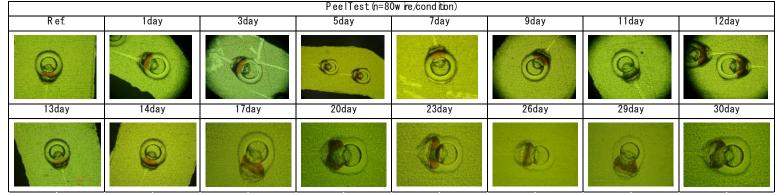

*Data every materials LOT of "Breaking load & Elongation" are listed.

We don't carry out shear / pull TEST, Peel test by the assembly LOT unit.

There is more frequency QC control than wire materials LOT.

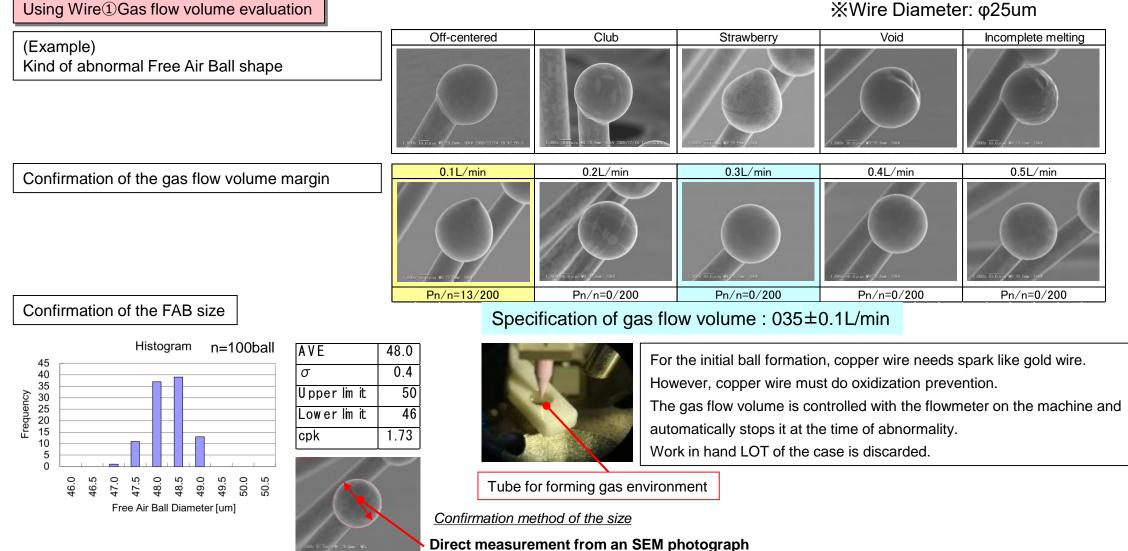
Thus, the difference of wire materials LOT is included in this.



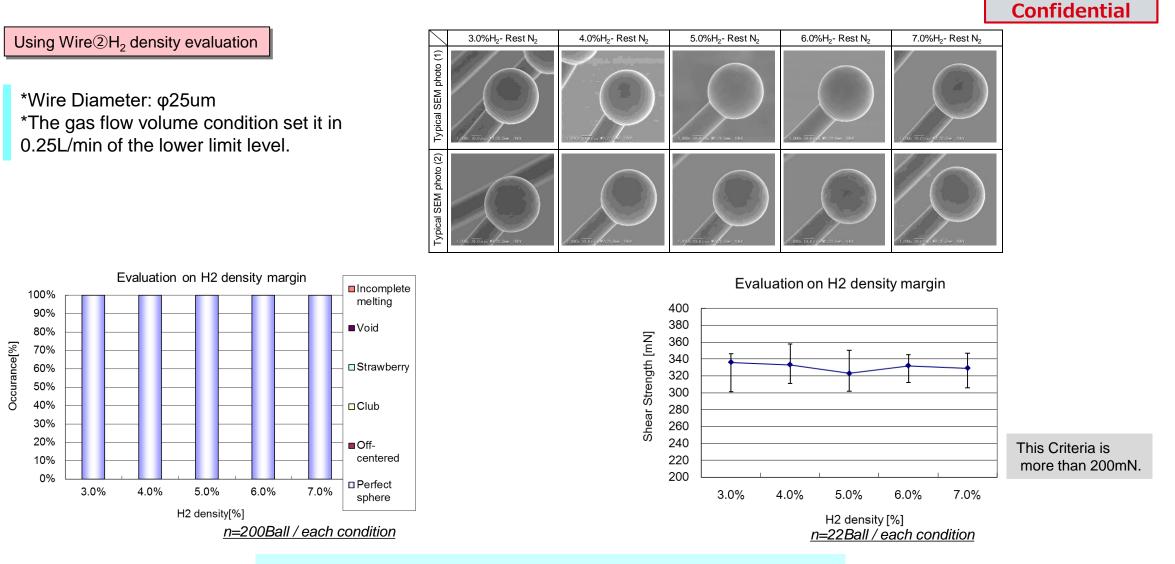


If a nylon bag is unopened,

no change on oxidized surface depth, extension and mechanical strength.



Control standard (expiration date) is168 hours after packing opening.


[9] The expiration date of Cu wire \Im

Specification of gas composite ratio : $5\pm1\%H_2$ -restN₂

ROHM

ROHM Co., Ltd. © 2021 ROHM Co., Ltd.

信頼性試験結果報告 Reliability Test Result

機種/TYPE :BA4580RF

形状/PACKAGE :SOP8 (Cu wire)

2021年 7月 8日 Rev. J-1 LSI事業本部 LSI高品質設計部 LSI Business Unit, LSI High Quality Design Division

矢野 茂秀 S.Yano

【 信頼性試験結果 】

試験項目 ITEM	試験方法 METHOD	試験時間 DURATION	サンプル数 n (pcs)	不良数 pn (pcs)
半田耐熱性 <#2> Resistance to soldering heat	加湿処理後、赤外線リフロー加熱(ピーク260℃) After the moisture soaking treatment,carry	10s	22	0
	out the soldering heat stress(IR reflow :peak260°C) JEITA ED4701-301			
プレッシャークッカー〈#1〉 Pressure Cooker	121℃ / 100% (2.026x10⁵Pa) に放置 Storage at 121℃/100% (2.026x10⁵Pa)	96h	22	0
温度サイクル <#1> Temperature Cycling	Tstg min (30min) / Tstg max (30min) JEITA ED4701-105	100cycles	22	0
高温保存 High Temperature Storage	Tstg max に放置 Storage at Tstg max JEITA ED4701-201	1000h	22	0
低温保存 Low Temperature Storage	Tstg min に放置 Storage at Tstg min JEITA ED4701-202	1000h	22	0
高温高湿保存 <#1> Temperature Humidity Storage	85°C / 85% に放置 Place at 85°C/85% JEITA ED4701–103	1000h	22	0
高温高湿バイアス <#1> Temperature Humidity Bias	85°C / 85% にて通電 JEITA ED4701-102 Apply the specified voltage at 85°C/85%	1000h	22	0
高温動作 High Temperature Operation Life	Topr max にて通電 JEITA ED4701-101 Apply the specified voltage at Topr max	1000h	22	0

【 強度試験結果 】

端子強度 (引っ張り)試験	Pull force = 1N	10s	5	0
Terminal strength	JEITA ED4701-401			
半田付け性試験	浸漬温度 215℃、鉛半田	10s	22	0
Solderability	Dipping temperature 215°C, (Pb) JEITA ED4701-303			
	浸漬温度 245℃、鉛フリー半田	5s	22	0
	Dipping temperature 245°C, (Pb free) JEITA ED4701-303			
静電破壊	C=100pF、R=1.5k Ω 、3times、±2000V	_	5	0
Electro Static Discharge	HBM (Human Body Model) JS-001 (JEITA ED4701-304)			
	C=200pF, R=0 Ω , 3times, ±100V	_	5	0
	MM (Machine Model)			
	±500V	_	5	0
	CDM (Charged Device Model) JS-002			
ラッチアップ試験	パルス電流注入方法、トリガーパルス電流 ±100mA	_	5	0
Latch Up	Pulse current injection、trigger pulse current ± 100 mA			
	JESD78 (JEITA ED4701-306)			

<<#1>> の試験項目につきましては、前処理として半田耐熱性試験を3回行った後に各試験を行います。 Soldering Heat examination is executed 3 times for the precondition.

<<#2>> 加湿処理 一般品:85°C 85% 168h / 防湿梱包品: 30°C 70% 192h Moisture soaking treatment Standard:85°C 85% 168h / Dry packing:30°C 70% 192h