

# PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APM-MHD/10/4730 Notification Date 01/26/2010

Qualification of ASE Weihai (China) new subcontractor for products packaged in TO92 Halogen Free

#### **Table 1. Change Implementation Schedule**

| Forecasted implementation date for change                                                    | 19-Jan-2010 |
|----------------------------------------------------------------------------------------------|-------------|
| Forecasted availabillity date of samples for customer                                        | 19-Jan-2010 |
| Forecasted date for <b>STMicroelectronics</b> change Qualification Plan results availability | 19-Jan-2010 |
| Estimated date of changed product first shipment                                             | 27-Apr-2010 |

#### **Table 2. Change Identification**

| Product Identification (Product Family/Commercial Product) | All products assembled in TO92                                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Type of change                                             | Package assembly location change                                                            |
| Reason for change                                          | Production rationalization                                                                  |
| Description of the change                                  | Qualification of halogen free material set for TO92 package produced in ASE Weihai (China). |
| Product Line(s) and/or Part Number(s)                      | See attached                                                                                |
| Description of the Qualification Plan                      | See attached                                                                                |
| Change Product Identification                              | Marking on package: last 2 digits will become "GE" instead of "9Y".                         |
| Manufacturing Location(s)                                  |                                                                                             |

**A**7/.

|    |     |    |      | _   | _     | _      |  |
|----|-----|----|------|-----|-------|--------|--|
| Тэ | hla | 2  | lict | ∧f  | Attac | hments |  |
|    | DIE | J. | LISL | UI. | Allau |        |  |

| Customer Part numbers list |  |
|----------------------------|--|
| Qualification Plan results |  |

| Customer Acknowledgement of Receipt                       | PCN APM-MHD/10/4730          |
|-----------------------------------------------------------|------------------------------|
| Please sign and return to STMicroelectronics Sales Office | Notification Date 01/26/2010 |
| □ Qualification Plan Denied                               | Name:                        |
| □ Qualification Plan Approved                             | Title:                       |
|                                                           | Company:                     |
| □ Change Denied                                           | Date:                        |
| □ Change Approved                                         | Signature:                   |
| Remark                                                    |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
|                                                           |                              |
| 1                                                         |                              |

**A**7/.

## **DOCUMENT APPROVAL**

| Name               | Function                   |
|--------------------|----------------------------|
| Gilot, Yves        | Division Marketing Manager |
| Kaire, Jean-Claude | Division Product Manager   |
| Paccard, Francoise | Division Q.A. Manager      |

**A7**/.





# **Reliability and Qualification Report**

Halogen free TO92 packaged in ASE Weihai (China)

#### PCN APM-MHD/10/4730

**General Information** 

Product Line B831/0431

Commercial product TS831-5/Z-AP, TL431CZ

Product Description Supervisor, Voltage reference

Product Group APM

Product division Standard Ic's

Package TO92

Silicon Process technology Hf2CMOS, Bipolar

| Locations        |                        |  |  |  |  |  |  |
|------------------|------------------------|--|--|--|--|--|--|
| Wafer fab        | Ang Mo Kio (Singapore) |  |  |  |  |  |  |
| Assembly plant   | ASE Weihai             |  |  |  |  |  |  |
| Final Test plant | ASE Weihai             |  |  |  |  |  |  |

#### **DOCUMENT INFORMATION**

| Version | Date         | Pages | Prepared by | Approved by | Comment     |
|---------|--------------|-------|-------------|-------------|-------------|
| 1.0     | 23-Sept-2008 | 5     | JM Bugnard  | F Paccard   | First issue |
|         |              |       |             |             |             |

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

Version 1.0 Page 1/7





**1 RELIABILITY AND QUALIFICATION EVALUATION OVERVIEW** 

## 1.1 Objectives

Aim of this report is to present the results of the reliability evaluations performed on B831 and 0431 test vehicles to qualify halogen free material set for package TO92 produced in ASE Weihai.

## 1.2 Conclusion

All results are inside ST specification and TO92 with halogen free material set below described in ASE Weihai is qualified for AMPS BU.

Version 1.0 Page 2/7



2 DEVICES TRACABILITY

## 2.1 Devices description

B831: The TS831 is an ultra low power integrated circuit incorporating a high stability band-gap voltage reference and a comparator with an open drain output.

The threshold voltage is set at 4.33V for TS831-5, 4.5V for TS831-4 and 2.71V for TS831-3 by internal thermally matched resistors. The comparator exhibits a 20µs response (with 10mV overdrive) and has an open drain output active when input voltage is lower than the threshold. An internal hysteresis, 100mV for TS831-4 / TS831-5 and 60mV for TS831-3, increases the comparator's noise margin and prevents false reset operation.

0431: The TL431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire operating temperature range. The output voltage may be set to any value between 2.5 V and 36 V with two external resistors.

The TL431 operates with a wide current range from 1 to 100 mA with a typical dynamic impedance of 0.22 ohm.

#### 2.2 Wafer fabrication information

| TV                         | B831           | 0431        |  |
|----------------------------|----------------|-------------|--|
| Wafer fabrication location | AMK6           | AMK6        |  |
| Technology                 | HF2CMOS        | Bipolar     |  |
| Die size (µm)              | 1.50x134mm     | 1.22x0.90mm |  |
| Passivation type           | Nitride+Pvapox | Nitride     |  |

## 2.3 Assembly information

| TV                        | B831                   | 0431 |  |  |  |
|---------------------------|------------------------|------|--|--|--|
| Assembly site             | ASE Weihai ASE Weil    |      |  |  |  |
| Package description       | TO92                   | TO92 |  |  |  |
| Molding compound          | KCC KTMC 1050GD        |      |  |  |  |
| Frame material            | copper                 |      |  |  |  |
| Die attach process        | Epoxy glue             |      |  |  |  |
| Die attach material       | amicon c990j ablestick |      |  |  |  |
| Wires material & diameter | 1mil                   |      |  |  |  |
| Lead finishing            | Sn                     |      |  |  |  |

Version 1.0 Page 3/7



**3 RELIABILITY TESTS RESULTS** 

# 3.1 Test vehicle

| Lot<br># | Process/<br>Package | Product Line | Comments |
|----------|---------------------|--------------|----------|
| 1        | HF2CMOS/TO92        | B831         |          |
| 2        | Bipolar/TO92        | 0431         |          |
| 3        |                     |              |          |

Detailed results in below chapter will refer to P/N and Lot #.

## 3.2 Test plan and results summary

| Test           | РС          | C Std ref. Conditions SS S |                          | Steps | Fá       | Failure/SS |       | Note |                                      |
|----------------|-------------|----------------------------|--------------------------|-------|----------|------------|-------|------|--------------------------------------|
| 1621           | FC          | Stu Tel.                   | Conditions               | 33    | 33 Steps |            | Lot 4 |      | Note                                 |
| Die Orie       | ntec        | l Tests                    |                          |       |          |            |       |      |                                      |
|                |             | JESD22                     |                          |       | 168 H    | 0/78       | 0/78  |      |                                      |
| HTB            | Ν           | A-108                      | Tj = 125℃, BIAS          | 156   | 500 H    | 0/78       | 0/78  |      |                                      |
|                |             | 71 100                     |                          |       | 1000 H   | 0/78       | 0/78  |      |                                      |
| <b>Package</b> | Ori         | ented Tests                |                          | ·     | •        |            | -     |      |                                      |
| AC             | V           | JESD22                     | Pa=2Atm / Ta=121℃        | 156   | 168 H    | 0/78       | 0/78  |      |                                      |
| ٨٥             | '           | A-102                      | 1 a=2Atiii/ 1a=121 C     | 240 H | 0/78     | 0/78       |       |      |                                      |
|                |             | JESD22                     |                          |       | 100 cy   | 0/78       | 0/78  |      |                                      |
| TC             | Υ           | A-104                      | Ta = -65℃ to 150℃        | 156   | 200 cy   | 0/78       | 0/78  |      |                                      |
|                |             | 7104                       |                          |       | 500 cy   | 0/78       | 0/78  |      |                                      |
|                |             | JESD22                     |                          |       | 168 H    | 0/78       |       |      |                                      |
| THB            | Υ           | A-101                      | Ta = 85℃, RH = 85%, BIAS | 78    | 500 H    | 0/78       |       |      |                                      |
|                |             | 77 101                     |                          |       | 1000 H   | 0/78       |       |      |                                      |
| Other Te       | Other Tests |                            |                          |       |          |            |       |      |                                      |
| WBS            | N           | AECQ100-001                |                          | 30    | N/A      | Χ          |       |      | See preliminary                      |
| WBP            | N           | MILSTD883<br>Method 2011   |                          | 30    | N/A      | Х          |       |      | result from assy report in chapter 6 |
| SD             |             | JESD22 B102                |                          | 20    | N/A      | Χ          |       |      |                                      |

Version 1.0 Page 4/7



4 ANNEXES

## 4.1 Tests Description

| Test name                                                                           | Description                                                                                                                                                                                                                      | Purpose                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Die Oriented                                                                        |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                  |
| HTOL High Temperature Operating Life HTB High Temperature Bias                      | The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.                                                                  | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.  The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.                                                                                                                         |
| HTRB High Temperature Reverse Bias HTFB / HTGB High Temperature Forward (Gate) Bias | The device is stressed in static configuration, trying to satisfy as much as possible the following conditions: low power dissipation; max. supply voltage compatible with diffusion process and internal circuitry limitations; | To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way.  To maximize the electrical field across either reverse-biased junctions or dielectric layers, in order to investigate the failure modes linked to mobile contamination, oxide ageing, layout sensitivity to surface effects. |
| HTSL<br>High Temperature<br>Storage Life                                            | The device is stored in unbiased condition at<br>the max. temperature allowed by the<br>package materials, sometimes higher than<br>the max. operative temperature.                                                              | To investigate the failure mechanisms activated<br>by high temperature, typically wire-bonds solder<br>joint ageing, data retention faults, metal stress-<br>voiding.                                                                                                                                                                                                                            |
| <b>ELFR</b><br>Early Life Failure<br>Rate                                           | The device is stressed in biased conditions at the max junction temperature.                                                                                                                                                     | To evaluate the defects inducing failure in early life.                                                                                                                                                                                                                                                                                                                                          |
| Package Oriented                                                                    |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>PC</b><br>Preconditioning                                                        | The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption.                                                                                              | As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.                                                                                                   |
| AC<br>Auto Clave<br>(Pressure Pot)                                                  | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.                                                                                                                         | To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.                                                                                                                                                                                                                                                                |
| TC<br>Temperature<br>Cycling                                                        | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.                                                                                                                    | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.                                                            |
| THB Temperature Humidity Bias Other                                                 | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.                                                        | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.                                                                                                                                                                                                                                                         |

Version 1.0 Page 5/7





## **5 GLOSSARY**

ESD Electro Static Discharge ELFR Early Life Failure Rate

GL Gate Leakage

HTB High Temperature Bias

HTRB High Temperature Reverse BiasHTS High Temperature StorageT.H.B. Temperature Humidity Bias

T.C. Thermal CycleP.P. Pressure PotP.C. Preconditioning

# **6 CONSTRUCTION ANALYSIS**

| Lower Spec Limit (LSL)                 | Min 21 gr                          |       |       | Performed by |       |               |       | Hongyu.Sun |        |         |  |  |
|----------------------------------------|------------------------------------|-------|-------|--------------|-------|---------------|-------|------------|--------|---------|--|--|
| Equipment                              |                                    | Gauge |       | Method       |       |               |       |            | Manual |         |  |  |
| Equipment Model                        |                                    | 400   |       |              |       | Wire Diameter |       |            |        | 1.0 mil |  |  |
| BALL SHEAR TEST                        |                                    | Unit  |       |              |       |               |       |            |        |         |  |  |
| DALL SHEAR TEST                        | 1                                  | 2     | 3     | 4            | 5     | 6             | 7     | 8          | 9      | 10      |  |  |
| nl                                     | 48.29                              | 59.6  | 56.54 | 48.54        | 53.91 | 55.95         | 54.58 | 53.45      | 47.19  | 56.9    |  |  |
| n2                                     | 50.89                              | 47.91 | 44.66 | 51.91        | 52.16 | 48.31         | 47.51 | 58.15      | 55.08  | 53.8    |  |  |
| n3                                     | 52.5                               | 53.09 | 52.79 | 52.59        | 51.23 | 48.49         | 52.27 | 50.78      | 49.96  | 54.7    |  |  |
| Mean                                   | 50.6                               | 53.5  | 51.3  | 51.0         | 52.4  | 50.9          | 51.5  | 54.1       | 50.7   | 55.2    |  |  |
| Max                                    | 52.5                               | 59.6  | 56.54 | 52.59        | 53.91 | 55.95         | 54.58 | 58.15      | 55.08  | 56.9    |  |  |
| Min                                    | 48.29                              | 47.91 | 44.66 | 48.54        | 51.23 | 48.31         | 47.51 | 50.78      | 47.19  | 53.8    |  |  |
| n                                      | 3                                  | 3     | 3     | 3            | 3     | 3             | 3     | 3          | 3      | 3       |  |  |
| Range                                  | 4.21                               | 11.69 | 11.88 | 4.05         | 2.68  | 7.64          | 7.07  | 7.37       | 7.89   | 3.07    |  |  |
| Std. Dev.                              | 2.12                               | 5.86  | 6.07  | 2.17         | 1.36  | 4.36          | 3.61  | 3.73       | 4.00   | 1.59    |  |  |
| Ppk                                    | 4.64                               | 1.85  | 1.66  | 4.61         | 7.70  | 2.29          | 2.82  | 2.96       | 2.48   | 7.18    |  |  |
| SHEAR MODE :                           |                                    |       |       |              |       |               |       |            |        |         |  |  |
| Al                                     | 0                                  | 0     | 0     | 0            | 0     | 0             | 0     | 0          | 0      | 0       |  |  |
| Ball                                   | 2                                  | 2     | 2     | 2            | 2     | 2             | 2     | 2          | 2      | 2       |  |  |
| Cratering                              | 0                                  | 0     | 0     | 0            | 0     | 0             | 0     | 0          | 0      | 0       |  |  |
| Overall Mean based on total n balls    |                                    |       | 52.1  |              |       |               |       |            |        |         |  |  |
| Overall Max based on total n balls     |                                    |       | 59.6  |              |       |               |       |            |        |         |  |  |
| Overall Minbased on total n balls      |                                    |       | 44.66 |              |       |               |       |            |        |         |  |  |
| Overall Std Dev based on total n balls |                                    |       | 3.54  |              |       |               |       |            |        |         |  |  |
| Overall Ppk based on total             | Overall Ppk based on total n balls |       |       | 1            |       |               |       |            |        |         |  |  |

Version 1.0 Page 6/7



Ref: QATO9HV1

#### WBP (Wire bond Pull)

| Lower Spec Limit (LSL) | Min 4.0 gr | Performed by  | Hongyu.Sun |
|------------------------|------------|---------------|------------|
| Equipment              | Gauge      | Method        | Manual     |
| Equipment Model        | 400        | Wire Diameter | 1.0 mil    |

| WIRE PULL TEST | Unit   |        |        |        |        |        |        |        |        |       |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| WHEE POLL IEST | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10    |
| nl             | 9.80   | 10.24  | 10.38  | 8.75   | 10.23  | 10.08  | 10.25  | 10.03  | 7.93   | 10.15 |
| n2             | 11.75  | 8.84   | 9.45   | 11.16  | 11.47  | 11.16  | 9.75   | 10.88  | 10.15  | 10.00 |
| п3             | 10.82  | 10.56  | 10.46  | 9.49   | 10.12  | 10.68  | 11.69  | 9.64   | 11.11  | 10.56 |
| Mean           | 10.8   | 9.9    | 10.1   | 9.8    | 10.6   | 10.6   | 10.6   | 10.2   | 9.7    | 10.2  |
| Max            | 11.748 | 10.559 | 10.459 | 11.156 | 11.473 | 11.159 | 11.694 | 10.877 | 11.114 | 10.56 |
| Min            | 9.804  | 8.844  | 9.451  | 8.747  | 10.118 | 10.084 | 9.75   | 9.636  | 7.93   | 9.997 |
| n              | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3     |
| Range          | 1.944  | 1.715  | 1.008  | 2.409  | 1.355  | 1.075  | 1.944  | 1.241  | 3.184  | 0.563 |
| Std Dev        | 0.97   | 0.91   | 0.56   | 1.23   | 0.75   | 0.54   | 1.01   | 0.63   | 1.63   | 0.29  |
| Ppk            | 2.02   | 1.82   | 3.09   | 1.32   | 2.53   | 3.55   | 1.87   | 2.78   | 0.99   | 6.12  |
|                | В      | В      | В      | В      | В      | В      | В      | В      | В      | В     |
| BREAK MODE     | D      | В      | В      | D      | В      | В      | В      | В      | В      | В     |
|                | В      | В      | В      | В      | В      | В      | D      | В      | D      | В     |

Overall Mean based on total n wires 10.25

Overall Max based on total n wires 11.75

Overall Min based on total n wires 7.93

Overall Std Dev based on total n wires 0.86

Overall Ppk based on total n wires 2.44

Breaking Point

B: Blue Letter
C: Red Letter
D: Green Letter
A,E: None

Failure mode -

B Failure at Ball Bond Heel

D Failure at Stitch Bond Heel

C Lifted Ball Bond at Die

E Lifted Stitch Bond at frame

A Wire Break at points other than Ball /

Stitch heel

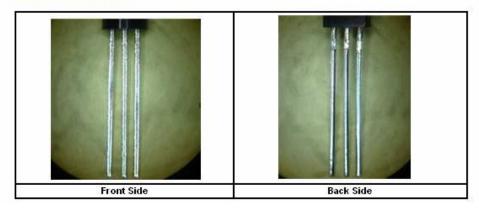
SD (Solderability)

#### SOLDERABILITY TEST

Upper Spec Limit (USL) 100% coverage

Equipment Solder Ability Tester

Equipment Model


Performed by Method (i) Method (ii) Xiumei.Tian Dry Air Bake Steam Age

Result : Dry Air Bake Steam Age

| 2.75 |      | ALC: Y | Unit |      |      |      |      | 200  |      |
|------|------|--------|------|------|------|------|------|------|------|
| 1 _  | 2    | 3 —    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| 100% | 100% | 100%   | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
| 100% | 100% | 100%   | 100% | 100% | 100% | 100% | 100% | 100% | 100% |

REMARKS

We didn't find any reject.



Version 1.0 Page 7/7

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2010 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

