

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN CRP/09/4410 Notification Date 03/17/2009

HF4CMOS S Baseline 200A capa DIFFUSION TRANSFER FROM CARROLLTON 6" TO ANG MO KIO 6"

Table 1. Change Implementation Schedule

Forecasted implementation date for change	06-Jun-2009
Forecasted availabillity date of samples for customer	17-Mar-2009
Forecasted date for STMicroelectronics change Qualification Plan results availability	17-Mar-2009
Estimated date of changed product first shipment	20-Jun-2009

Table 2. Change Identification

Related APCN	3285
Product Identification (Product Family/Commercial Product)	ALL PRODUCTS IN THIS TECHNOLOGY
Type of change	Waferfab location change
Reason for change	FAB CLOSURE AS PER CORPORATE CIL CRP/07/2900
Description of the change	Following Corporate CIL CRP/07/2900 we are transferring the process HF4CMOS S Baseline 200A capa and related products from Carrollton to Ang Mo Kio.
Product Line(s) and/or Part Number(s)	See attached
Description of the Qualification Plan	See attached
Change Product Identification	plant marking identification "V6" for Ang Mo Kio plant
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN CRP/09/4410
Please sign and return to STMicroelectronics Sales Office	Notification Date 03/17/2009
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function
Buffa, Michel	Corporate Quality Manager
Sibille, Marie-Helene	Corporate Quality Manager
Vitali, Gian Luigi	Corporate Quality Manager
Buiguez, Francois	Process Owner

DOCUMENT APPROVAL

HF4CMOS S Baseline 200A capa DIFFUSION TRANSFER FROM CARROLLTON 6" TO ANG MO KIO 6" FAB

WHAT:

Progressing along the Restructuring Plan already communicated by Corporate Information Letter (C.I.L.) CRP/07/2900 dated September 25, 2007 and APCN CRP/07/3285 dated December 21, 2007, please be informed that the products currently manufactured in Carrollton 6" Plant (Texas) by using HF4CMOS S (Shrink), Technology, will be moved to our facilities located in Ang Mo Kio 6" Plant (Singapore).

All the products manufactured by ST using HF4CMOS S Technology, even if not expressly included in the above mentioned PIL & APCN, are affected by this change.

WHY:

To optimize ST asset utilization and enhance performance for shareholders and customers.

HOW:

By transferring and re-qualifying the mentioned front-end technology in the receiving plant; this technology has been qualified through a full set of evaluations on the selected test vehicle (TV for technology qualification): T84, EWS, electrical characterization, die and package oriented stress tests; the others products diffused in the same Technology are qualified mainly by similarity (generic data) if assembled in the same package family. In case of different package families, stress test package oriented are carried on a "package test vehicle" (FE/BE compatibility) as listed in the annexed table.

Techno family	Techno sub family	Product	Package	Product Group	QUAL PLAN
HF4CMOS S Baseline 200A capa	HF4CMOS S Baseline 200A capa	A224	LQFP	APG	TV for technology qualification
		A184	SO28	APG	TV for FE/BE compatibility
		A190	TSSOP	APG	TV for FE/BE compatibility
	HF4CMOS S 545A capa	n.a.			

The above test vehicles qualify both Techno sub families: HF4CMOS S Baseline 200A capa and HF4CMOS S 545A capa.

This transfer will not modify the electrical, dimensional and thermal parameters for the affected products, maintaining unchanged current information published on the relevant datasheets.

ST is focused on customer satisfaction in order to ensure a seamless transition in the supply of products from the new site.

WHEN:

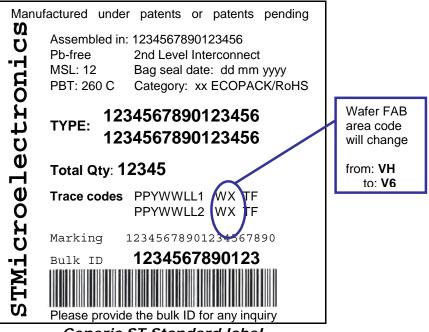
The production start and first shipments will be implemented according to our work in progress and material availability. Full traceability is guaranteed by dedicated genealogy and traceability on the part.

We are ready to start shipments from AMK from June 09 onward.

The transfer of all product lines and the ramp up in the new location will be finalized within Q4/2009.

Qualification program and results availability:

Reliability report RR000509CS2039, test vehicle A224 for process evaluation, is provided below.


Reliability reports of test vehicle for FE/BE compatibility to be provided in week 17/09.

Product's traceability:

Unless otherwise stated by customer specific requirements, new parts produced in AMK6 have a different traceability code as below:

Diffusion plant	ID	Country of origin
Carrollton (current)	VH	Texas
AMK6 (new)	V6	Singapore

Shipments from new Wafer FAB location are tracked on ST Standard Label as showed below:

Generic ST Standard label

Samples availability:

Samples are available upon request to our local Sales Offices.

RELIABILITY REPORT

TDA7540N [A224CD6]

LQFP 80 package

Car Audio Processor

Author: F. CERAULO

Approved: R. RODARI

CONTENTS

1. INTRODUCTION	. 3
2. CONCLUSION	. 4
3. DEVICE DESCRIPTION	. 5
3.1 BLOCK DIAGRAM 7 3.2 PIN CONNECTION 8 3.3 PIN LIST 9	
4. CONSTRUCTION NOTE	12
4.1 BONDING DIAGRAM134.2 MECHANICAL DATA14	
5. RELIABILITY TESTS DESCRIPTION	15
5.1 DIE ORIENTED TESTS	
6. RELIABILITY TEST RESULTS	17
7. SCHEMATICS	18

1. INTRODUCTION

The purpose of this document is to describe the reliability qualification trials and the results carried out on A224CD6 device diffused in HF4CMOS Shrink technology and assembled in LQFP 80 package.

Qualification plan:

HTOL	High Temperature Operating Life Test.
РС	Preconditioning: moisture sensitivity level 3
тнв	Thermal Humidity Bias
тс	Thermal Cycles.
AC	Autoclave
HTS	High Temperature Storage
ESD	Electrostatic Discharge.
LU	Latch-up.
WBP	Wire Bond Pull.

2. CONCLUSION

The reliability tests performed on A224CD device diffused in HF4CMOS Shrink and assembled in LQFP 80 package, gave the following results:

HTOL	No failures and no drifts on key parameters have been found after 1000 hours of HTOL test.		
РС	No die delamination has been observed after preconditioning sequence (JL3).		
ТНВ	No failures have been found after 1000H of thermal humidity bias		
тс	No failures have been found after preconditioning plus 1000 thermal cycles.		
AC	No failures have been found after preconditioning plus 96h autoclave		
HTS	No failures have been found after 1000H of high temperature storage		
ESD	HBM ±1.5kV was applied without failures. MM ±125V was applied without failures. CDM [*] ±250V was applied without failures. * CORNER PINS ±750V		
LU	Injection and Overvoltage models were applied and no failures have been detected.		
WBP	All measurements within specs limit		

3. DEVICE DESCRIPTION

The TDA7540N is a high performance tuner circuit for AM/FM car radio. It contains mixer, IF amplifier, demodulator for AM and FM, Stereodecoder, quality detection, ISS filter and PLL synthesizer with IF counter on a single chip. Use of BICMOS technology allows the implementation of several tuning functions and a minimum of external components.

FEATURES

FM-part

RF AGC generation by RF and IF detection I/Q mixer for 1st FM IF 10.7MHz with image rejection Mixer for 2nd IF 450kHz Internal 450 KHz bandpass filter with bandwidth control by ISS Fully integrated FM-demodulator with spike cancellation

AM-part

Wide and narrow AGC generation Mixer for 1st IF 10.7MHz, AM up conversion Mixer for 2nd IF 450 kHz AM down conversion Integrated AM-demodulator AM IF- and audio noise blanking

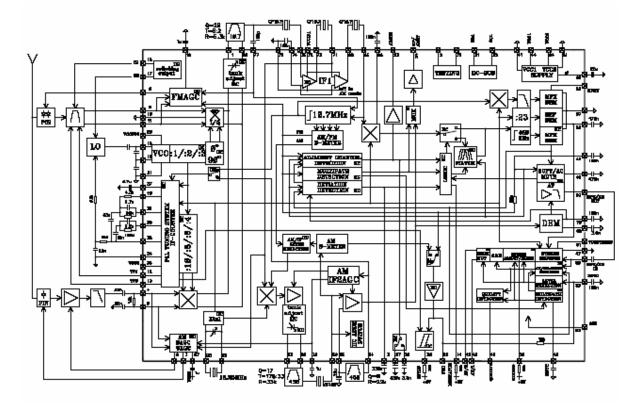
Stereodecoder

PLL with adjustment free, fully integrated VCO Automatic pilot dependent mono/stereo switching Programmable ROLL-OFF compensation High cut and stereo blend-characteristics programmable Dedicated RDS-mute Internal noise blanker with several threshold controls

Additional features

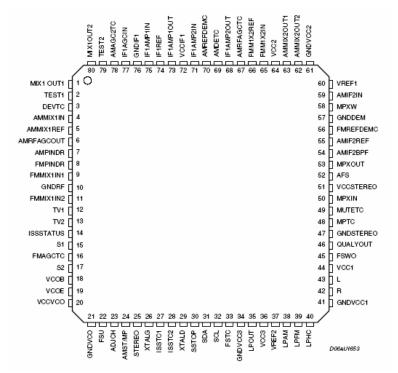
VCO for world tuning range High performance fast PLL for RDS-System IF counter for FM and AM with search stop signal

Quality detector for level, deviation, adjacent channel and multipath


ISS (intelligent selectivity system) for cancellation of adjacent channel and noise influences Adjacent channel mute

Fully electronic alignment

All functions I2C-Bus controlled



3.1 BLOCK DIAGRAM

3.2 PIN CONNECTION

3.3 PIN LIST

Pin #	Pin name	Function
1	MIX10UT1	Mixer tank 10.7MHz
2	TEST1	Testing I/O pin
з	DEVTC	Deviation detector time constant
4	AMMIX1IN	AM mixer1 input
5	AMMIX1REF	AM mixer1 reference
6	AMRFAGCOUT	Output AM RF AGC
7	AMPINDR	AM pin diode driver output
8	FMPINDR	FM pin cliode driver output
9	FMMIX1IN1	FM mixer1 input1

APG-RELIABILITY RR000509CS2039

Pin #	Pin name	Function
10	GNDRF	RF ground
11	FMMIX1IN2	FM mixer1 input2
12	TV1	Tuning voltage preselection1
13	TV2	Tuning voltage preselection2
14	ISSSTATUS	ISS filter status output
15	S1	Free programmable switching output
16	FMAGCTC	FM AGC time constant
17	S2	Free programmable switching output
18	VCOB	VCO input base
19	VCOE	VCO output emitter
20	VCCVCO	VCO supply
21	GNDVCO	VCO ground
22	FSU	Unweighted fieldstrength output
23	ADJCH	Ident, adjacent channel output
24	AMST/MP	AM stereo output / ident. multipath output
25	STEREO	Stereo information indication output
26	XTALG	Xtal oscillator to MOS gate
27	ISSTC1	Time constant1 ISS filter switch
28	ISSTC2	Time constant2 ISS filter switch
29	XTALD	Xtal oscillator to MOS drain
30	SSTOP	Search stop output
31	SDA	I ² C-Bus data
32	SCL	I ² C-Bus clock
33	FSTC	S-meter filtering capacitor
34	GNDVCC3	VCC3 ground
35	LPOUT	Op amp output to PLL loop filters
36	VCC3	Supply tuning voltage
37	VREF2	Voltage reference for PLL op amp
38	LPAM	Op amp input to PLL loop filters AM
39	LPFM	Op amp input to PLL loop filters FM
40	LPHC	High current PLL loop filter input
41	GNDVCC1	Digital ground
42	R	Stereodecoder output right
43	L	Stereodecoder output left
44	VCCI	Digital supply
45	FSWO	Weighted fieldstrength output with programmable DC offset
46	Qualyout	Stereodecoder quality output

APG-RELIABILITY RR000509CS2039

Pin #	Pin name	Function			
47	GNDSTEREO	Strereodecoder ground			
48	MPTC	Multipath time constant			
49	MUTETC	Weak signal mute time constant			
50	MPXIN	Stereodecoder Input			
51	VCCSTEREO	Stereodecoder supply			
52	AFS	Alternative frequency search drive			
53	MPX/AFAM	MPX output / AM AF output			
54	AMIF2BPF	AM IF2 bandpass filter			
55	AMIF2REF	Reference voltage AM IF2 amplifier			
56	FMREFDEMC	FM demodulator reference			
57	GNDDEM	Ground FM demodulator			
58	MPXW	MPX Output without ISS filtering			
59	AMIF2IN	Input AM IF2			
60	VREF1	Reference 5V			
61	GNDVCC2	Analog ground			
62	AMMIX2OUT2	AM Tank 450kHz			
63	AMMIX2OUT1	AM Tank 450kHz			
64	VCC2	Analog supply			
65	FMMIX2IN	FM IF1 mixer2 input			
66	FMMIX2REF	FM IF1 mixer2 reference			
67	AMRFAGCTC	AM RF AGC time constant			
68	IF1AMP2OUT	IF1 amplifier2 output			
69	AMDETC	AM detector capacitor			
70	AMREFDEMC	AM demodulator reference			
71	IF1AMP2IN	IF1 amplifier2 input			
72	VCCIF1	IF1 supply			
73	IF1AMP1OUT	IF1 amplifier1 output			
74	IF1REF	IF1 amplifier reference			
75	IF1AMP1IN	IF1 amplifier1 input			
76	GNDIF1	IF1 ground			
77	IF1AGCIN	IF1 AGC input			
78	AMAGC2TC	AM AGC2 time constant			
79	TEST2	Testing I/O pin			
80	MIX1OUT2	Mixer tank 10.7MHz			

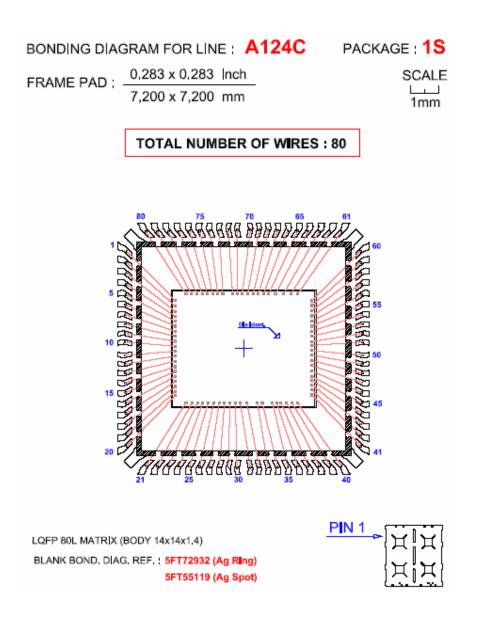
4. CONSTRUCTION NOTE

Device name:	TDA7540N
Internal name:	A224CD6
Function:	car audio processor

DIE DATA

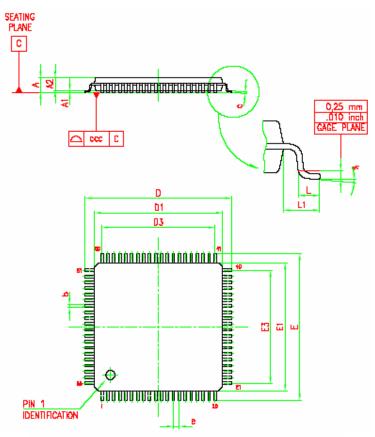
Diffusion process:	HF4CMOS Shrink	
Die sizes:	5.120 x 4.170 mm ²	
Passivation:	PSG + NITRIDE	
Back finishing:	LAPPED SILICON	
Metallization:	A224CD6:	
	1) Ti / AlSiCu / TiN	0.62 µm
	2) Ti / AlSiCu / TiN	0.72 µm
	3) Ti / AlSiCu / TiN	0.85 µm

PACKAGE DATA


Package line:	LQFP 80 14x14x1.4 1
Wires:	WIRE Au D1 BL10-14g EL.2-7% 2000mt
Resin:	RESIN SUMITOMO EME-G700L D14mm W3.7 g
Die Attach:	GLUE QMI9507-1A1 10cc/41g Sy
Frame material:	FRAME LQFP 80L 14x14mm 7.2x7.2 Fpad SpAg

TRACEABILITY

Design center:	GRASBRUH
Diffusion plant:	АМК 6″
Traceability:	B51S*A224CD6
Diffusion Lot:	681640H (1^Lot) / 681640F (2^Lot) / 6822NH4 (4^Lot)
	6823NHK (5^Lot) / 6827XF8 (6^Lot) / 998381NS01
Assembly plant:	ST KIRKOP – MALTA
Testing site:	ST AGRATE – ITALY



4.1 BONDING DIAGRAM

4.2 MECHANICAL DATA

TITLE: LQFP 80L BODY 14x14x1.4 FOOT PRINT 1.0 PACKAGE CODE: 18

JEDEC/EIAJ REFERENCE NUMBER: JEDEC MS-026-BEC

	DIMENSIONS						
	DATABOOK (mm)				1		
REF.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX	NOTES
Α	1		1.60	1.425	1.50	1.575	
A1	0.05		0.15	0.085	0.10	0.135	
A2	1.35	1.40	1.45	1.38	1.40	1.44	(1)
ь	0.22	0.32	0.38	0.275	0.30	0.325	
e	0.09		0.20			0.165	
D	15.80	16.00	16.20	15.90	16.00	16.10	
D1	13.80	14.00	14.20	13.975	14.00	14.025	
D3		12.35		12.30	12.35	12.40	
E	15.80	16.00	16.20	15.90	16.00	18.10	
E1	13.80	14.00	14.20	13.975	14.00	14.025	
E3		12.35		12.30	12.35	12.40	
		0.65		0.60	0.65	0.70	
L	0.45	0.60	0.75	0.45	0.60	0.75	
L1		1.00		0.938	1.00	1.083	
k	0	3.5	7	0	3.5	7	DEGREES
000			0.10			0.05	

NOTES:

 LQFP stands for Low profile Quad Flat Package. Low Profile: Body thickness (A2=1.40mm)

(3) - Exact shape of each corner is optional.

5. RELIABILITY TESTS DESCRIPTION

The tests performed for the reliability evaluation are described in the following sections.

5.1 DIE ORIENTED TESTS

HIGH TEMPERATURE OPERATING LIFE TEST

This test is performed to simulate and accelerate application conditions. This stress test is related to the investigation of different failure modes including electromigration, thermomigration, wire bonds degradation and oxide faults.

ESD CHARACTERIZATION

To evaluate adequate pin protections to electrostatic discharge. Human Body Model, Machine Model and Charged Device Model have been performed.

LATCH-UP

To evaluate adequate strength to high current and high voltage condition caused by parasitic devices.

5.2 PACKAGE ORIENTED TESTS

PRECONDITIONING SEQUENCE

The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption. This test simulates the shipment, storage and soldering phases for a SMT product.

THERMAL HUMIDITY BIAS

To investigate failure mechanisms activated in the die-package environment by electrical field and wet conditions. Typical failure mechanisms are electro-chemical corrosion and surface effects related to the moulding compound.

THERMAL CYCLE

To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.

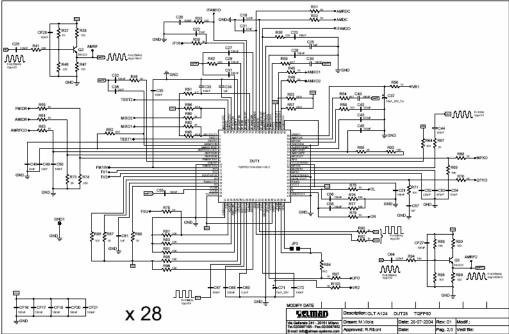
AUTOCLAVE

To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.

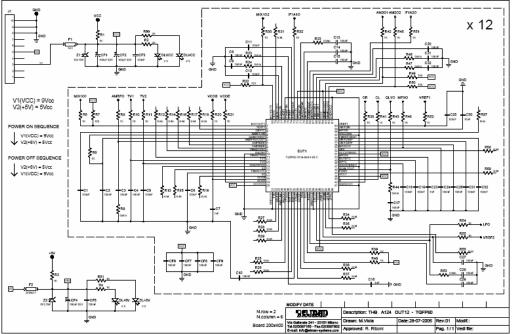
HIGH TEMPERATURE BAKE

To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.

6. RELIABILITY TEST RESULTS


	• ••••	_	681640H	681640F	6822NH4	6823NHK	6827XF8	
Test	Conditions	Duration	1^Results	2^Results	4^Results		6^Results	Results
PC	Storage: 125C	24 Hrs						
	Soak: 30C/RH=60%	192Hrs	Passed ¹	-				
(JL3)	3 reflow Tpeak=260C	-						
тнв	T _a = 85°C, R.H.=85%	1000Hrs			0/77	0/77	0/77	
тнв	$V_{BAT} = 9 V ; V_{cc} = 5 V$	10001113	_	_	0/77	0///	0///	_
HTS	Ta = 150°C	1000Hrs	0/77	-	-	-	-	-
тс	$T_a = -50^{\circ}C / 150^{\circ}C$ air to air	1000 Cy	0/77	0/77	0/77	-	-	-
PP	$T_a = 121^{\circ}C$, P= 2.08 atm	96 Hrs	0/77	0/77	0/77	-	-	-
HTOL	$V_1 = 10 V; V_2 = 5 V; V_4 = 12 V$	1000Hrs	_	_	0/77	0/77	0/77	_
HIOL	$T_{jav} = 150$ °C	10001113	_	_	0/77	0///	0,77	_
	HBM [R=1.5kΩ, C=150pF]	±1.0KV	-	-	0/3	-	-	-
	MM	±100V	-	-	0/3	-	-	-
ESD	CDM*	±250V	-	-	0/3	-	-	-
	*CDM corner pins standard	±750V	-	-	0/3	-	-	-
LU	Over voltage	±100mA	-	-	0/8	-	-	-
0	Injection current 1.5 x	V _{op} max.	-	-	0/4	-	-	-
ELFR								3 X 800
WBP	Measure in accordance with M2011		0/10	0/5	0/5			

1. SAM inspection has been performed and no die-delamination has been detected before and after preconditioning sequence



7. SCHEMATICS

The HTOL and THB schematics are reported at the end of this document.

THB SCHEMATIC

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2009 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com