

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APG/08/3435 Notification Date 02/07/2008

PowerSSO-24/28/36 MUAR: GREEN MOLDING COMPOUND HITACHI CEL9240HF10

APG - APG

Table 1. Change Implementation Schedule

Forecasted implementation date for change	24-Mar-2008
Forecasted availabillity date of samples for customer	01-Mar-2008
Forecasted date for STMicroelectronics change Qualification Plan results availability	07-Feb-2008
Estimated date of changed product first shipment	15-Apr-2008

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	ALL PRODUCTS IN POWERSSO 24/28 & 36 LEADS
Type of change	Package assembly material change
Reason for change	Package assembly material change
Description of the change	New qualification compliant to 260 C, with green (halogen-free) molding compound HITACHI CEL9340HF10
Product Line(s) and/or Part Number(s)	See attached
Description of the Qualification Plan	See attached
Change Product Identification	No marking change / Internal traceability
Manufacturing Location(s)	1]St Muar - Malaysia

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN APG/08/3435
Please sign and return to STMicroelectronics Sales Office	Notification Date 02/07/2008
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	
· ·····	

Name	Function
Maggioni, Giampietro	Division Marketing Manager
Russo, Alfio	Division Marketing Manager
Aparo, Sebastiano	Division Product Manager
Rivolta, Danilo	Division Product Manager
Amadeo, Matteo	Division Q.A. Manager
Parrino, Emanuele	Division Q.A. Manager

DOCUMENT APPROVAL

PowerSSO-24/28/36 MUAR: GREEN MOLDING COMPOUND HITACHI CEL9240HF10

WHAT:

We have completed the qualification of the green molding compound HITACHI CEL9240HF10 to be used on our PowerSSO 24/28 & 36 leads line in Muar.

The qualification of a green molding compound (Halogen-free) is compliant to ST Company roadmap towards environmentally friendly components.

The change applies to all products in production for Power Powertrain & Safety and Car Body divisions, while all new products in qualification in these packages will start directly with the new Hitachi resin.

WHY:

Company roadmap and compliancy to standard spec IPC/JEDEC J-STD-020C.

HOW:

Here attached you find the qualification report **ER000108AG6053** for the qualification of the new molding compound that covers all the different front-end processes and back-finishing of the involved products.

WHEN:

HITACHI CEL9240HF10 is going to be implemented from end Q1/08. Samples available on customer's request through our Sales offices.

PowerSSO-24/28/36 MUAR HITACHI CEL9240HF10 MOLDING COMPOUND on FICO and ASA MOLD

RELIABILITY EVALUATION REPORT

Abstract

Reliability activity has been performed in order to qualify new molding compound HITACHI CEL9240HF10 on FICO and ASA mold systems available in Muar for PowerSSO-24/28/36 line.

The reliability tests have been performed on two different test vehicles, as detailed in "construction note" (page 2), chosen to represent the key front-end technological families assembled in the mentioned package family and using different bonding wire diameter.

Conclusion

On the basis of the results summarized in the present report, the samples assembled in Muar PowerSSO package using the new molding material and mold system have passed the reliability requirements for qualification.

The two test-vehicles can be classified as Jedec MSL3 SMDs according to J-STD-020C requirements for Pb-free components. This MSL can be extended to other devices on the basis of technological similarity criteria.

Reliability test conditions and results

TEST	CONDITIONS [SPEC]	UH22	UT32	NOTES
NAME		REJ./S.S.	REJ./S.S.	
JL3	24h bake @ 125°C	Lot ASA: 0/164	Lot ASA: 0/164	1
	192h @ 30°C / 60% RH	Lot FICO: 0/164	Lot FICO: 0/164	
	reflow simulation (3 times) at T _{MAX} =260°C			
	[IPC/Jedec J-STD-020C]			
JL3 + TCT	Ta=-65/+150°C, 500 cycles	Lot ASA: 0/77	Lot ASA: 0/77	1, 2, 3
		Lot FICO: 0/77	Lot FICO: 0/77	
JL3 + PP	2atm, 121°C, 168h	Lot ASA: 0/77	Lot ASA: 0/77	-
		Lot FICO: 0/77	Lot FICO: 0/77	
HTS	Ta=150°C, 1000h	Lot ASA: 0/45	Lot ASA: 0/45	2
		Lot FICO: 0/45	Lot FICO: 0/45	

NOTES:

¹ SAM analysis did not show any remarkable delamination at the die-molding compound interface and through the die-attach layer. Delamination has been found on intenal lead-tips, and successfully reliability-assessed according to J-STD-020C guidelines. Detail in attachment n. 2 and 3

² Wire bonding strength after the stress has been successfully verified through wire-pull test: neither abnormal break loads, nor forbidden failure modes have been detected. Detail in attachment n.2 and 3

³ Visual and SEM inspection after the stress test have pointed out no remarkable degradation of silicon passivation and metal interconnects. Stitch bonds integrity on internal lead-tips has been carefully checked after TC in order to assess the delamination pointed out by SAM inspection. Detail in attachment n.2 and 3

Construction note

Technical code : AAEH*UH22AE6		AAEH*UH22AE6	A6N3*UT32BB1
Diffusion process	:	BCD4	BCD5
Wafer diameter	:	6"	8"
Diffusion site	:	Ang-Mo Kio	AGRATE AG8
Die size (mm ²)	:	6.94 x 4.37	3.78 x 2.65
Metal levels	:	3, Ti/AlSiCu/TiN	3, Ti/AlCu/TiN
Passivation	:	USG-PSG-SiON-PIX	PSG+SiON+Polyimide
Back finishing	:	Cr/Ni/Au	Cr/Ni/Au
Package name	:	PowerSSO-36	PowerSSO-28
Assembly site	:	MUAR	MUAR
Leadframe	:	PSSO 36L WMtx Opt D	PSSO 28L WMtx
Die attach	:	Pb/Ag/Sn	Pb/Ag/Sn
Wire bonding	:	Au, 3 mil	Au, 1.3 mil
Molding compound	:	Hitachi CEL9240HF10	Hitachi CEL9240HF10
Lead finishing	:	Sn	Sn
Lot (s)_id	:	997310C902 - 997310C901	997310B202 - 997310B201

Attachments

1) Reliability tests description

2) Physical analysis report (UH22)

3) Physical analysis report (UT32)

ATTACHMENT 1: RELIABILITY TESTS DESCRIPTION

TEST NAME	DESCRIPTION	PURPOSE		
JLn: Jedec Level n surface mounting simulation	The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption.	As stand-alone test: to investigate the level of moisture sensitivity. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination.		
TCT: Temperature Cycles Test	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo- mechanical stress induced by the different thermal expansion of the materials interacting in the die- package system. Typical failure modes are linked to metal displacement, dielectric cracking, moulding compound delamination, wire-bonds failure, die-attach layer degradation.		
PPT: Pressure Pot Test	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.		
HTS: High Temperature Storage	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.		

ATTACHMENT 2: PHYSICAL ANALYSIS REPORT

Technical code : AAEH*UH22AE6

Package : PowerSSO-36

Lot(s)_id : 997310C902 (ASA) 997310C901 (FICO)

Evaluation subject : New Hitachi CEL9240 HF10 + ASA mold

Author : D. Casiraghi

Analysis status:

RUNNING

X COMPLETED

ANALYSIS PROGRAM

	DESTRUC	FIVE ITEMS		NON DESTRUCTIVE ITEMS		
Wire pull test	Ball Shear test	Internal visual	SEM inspection	SAM inspection	Other	WHEN
Х		Х	Х	Х		JL3+500TC
Х						1000h HTS

RESULTS SUMMARY

- SAM analysis did not show any remarkable delamination at the die-molding compound interface. Delamination has been observed on lead-tips and successfully assessed through long-term reliability stress tests (see SEM inspection and wire-pull results after JL3+TC).
- Visual and SEM inspection after long-term TC have pointed out no major degradation of silicon passivation, metal interconnects, stitch bonds on internal lead-tips.
- Wire bonding strength after TC and HTS stress has been successfully verified through wire-pull test: neither abnormal break loads, nor forbidden failure modes have been found.

TECHNICAL CODE	PACKAGE	ANALYSIS ITEM	STRESS TEST
AAEH*UH22AE6	PowerSSO-36	SAM inspection	JL3+500TC

TEST EQUIPMENT: SONOSCAN D9000 (Scanning Acoustic Microscope)

Lot	Sample	Defective parts (delamination)		
	size	die-mold (C-scan)	l/f-mold (C-scan)	diepad-mold (C-scan)
997310C902-ASA	10	0/10	10/10	10/10
Transducer frequency	(MHz)	30	30	30

TECHNICAL CODE	PACKAGE	ANALYSIS ITEM	STRESS TEST
AAEH*UH22AE6	PowerSSO-36	SAM inspection	JL3+500TC

TEST EQUIPMENT: SONOSCAN D9000 (Scanning Acoustic Microscope)

Lot	Sample	Defective parts (delamination)			
	size	die-mold (C-scan)	l/f-mold (C-scan)	diepad-mold (C-scan)	
997310C901-FICO	10	0/10	10/10	10/10	
Transducer frequency (MHz)		30	30	30	

TECHNICAL CODE	PACKAGE	LOTS	ANALYSIS ITEM
AAEH*UH22AE6	PowerSSO-36	997310C902 - 997310C901	Internal visual

ANALYSIS SUMMARY:

WHAT	WHEN	SAMPLE SIZE /LOTS	RESULT
Passivation and metal	JL3+500TC (-65/+150°C)	5pcs /ASA	Minor passivation cracks (photo 1-3)
		5pcs /FICO	Minor passivation cracks (photo 4-6)

DOCUMENTATION:

TEST EQUIPMENT: LEICA (Optical Microscope)

TECHNICAL CODE	PACKAGE	LOT	ANALYSIS ITEM
AAEH*UH22AE6	PowerSSO-36	997310C902 - 997310C901	SEM inspection

ANALYSIS SUMMARY:

WHAT	WHEN	SAMPLE SIZE	RESULT
Stitch-bond on lead	H_{2} 500TC (65/+150°C)	5pcs/ ASA	No visible defect (photo 1-3)
and ball bond	JL3+3001C (-05/+130 C)	5pcs/ FICO	No visible defect (photo 4-6)

DOCUMENTATION:

TEST EQUIPMENT: HITACHI (Scanning Electron Microscope)

TECHNICAL CODE	PACKAGE	LOT	ANALYSIS ITEM
AAEH*UH22AE6	PowerSSO-36	997310C902 - 997310C901	Wire pull-test

Wire type	:	Au, 3 mil
LSL (g)	:	26

Sample size (pcs)	:	5
Sample size (wires)	:	100

Failura mada] [JL3@260°C+500	TC (-65/+150°C)
Fanure mode		ASA	FICO
	1 1		
2: BALL NECK	mean (g)	57.02	56.78
	stdev (g)	4.22	3.86
	min (g)	49.22	45.84
	max (g)	69.70	64.93
	occurrence	33%	59%
3: LOOP CENTRE	mean (g)	52.47	55.35
	stdev (g)	5.28	4.63
	min (g)	43.38	45.54
	max (g)	68.52	70.03
	occurrence	67%	41%

Foilune mode]	HTS 100	0h 150°C
Fanure mode		ASA	FICO
		ſ	
2: BALL NECK	mean (g)	56.44	55.06
	stdev (g)	3.00	3.13
-	min (g)	48.76	48.61
	max (g)	63.10	62.59
	occurrence	46%	48%
	_		
3: LOOP CENTRE	mean (g)	53.71	52.85
	stdev (g)	5.00	3.43
	min (g)	44.71	46.24
	max (g)	69.04	60.67
	occurrence	54%	52%

Remarks: neither abnormal break loads, nor forbidden failure modes. AEC-Q100 criteria after TC passed.

ATTACHMENT 3: PHYSICAL ANALYSIS REPORT

Technical code : A6N3*UT32BB1

Package : PowerSSO-28

Lot(s)_id : 997310B202 (ASA) 997310B201 (FICO)

Evaluation subject : New Hitachi CEL9240 HF10 + ASA mold

Author : D. Casiraghi

Analysis status:

RUNNING

X COMPLETED

ANALYSIS PROGRAM

DESTRUCTIVE ITEMS				NON DESTRUC		
Wire pull test	Ball Shear test	Internal visual	SEM inspection	SAM inspection	Other	WHEN
Х		Х	Х	Х		JL3+500TC
Х						1000h HTS

RESULTS SUMMARY

- SAM analysis did not show any remarkable delamination at the die-molding compound interface. Delamination has been observed on lead-tips and successfully assessed through long-term reliability stress tests (see SEM inspection and wire-pull results after JL3+TC).
- Visual and SEM inspection after long-term TC have pointed out no degradation of silicon passivation, metal interconnects, stitch bonds on internal lead-tips.
- Wire bonding strength after TC and HTS stress has been successfully verified through wire-pull test: neither abnormal break loads, nor forbidden failure modes have been found.

TECHNICAL CODE	PACKAGE	ANALYSIS ITEM	STRESS TEST
A6N3*UT32BB1	PowerSSO-28	SAM inspection	JL3+500TC

TEST EQUIPMENT: SONOSCAN D9000 (Scanning Acoustic Microscope)

Lot	Sample	Defective parts (delamination)				
	size	die-mold (C-scan)	l/f-mold (C-scan)	diepad-mold (C-scan)		
997310B202-ASA	10	0/10	10/10	10/10		
Transducer frequency (MHz)		30	30	30		

TECHNICAL CODE	PACKAGE	ANALYSIS ITEM	STRESS TEST
A6N3*UT32BB1	PowerSSO-28	SAM inspection	JL3+500TC

TEST EQUIPMENT: SONOSCAN D9000 (Scanning Acoustic Microscope)

Lot	Sample	Defective parts (delamination)				
	size	die-mold (C-scan)	l/f-mold (C-scan)	diepad-mold (C-scan)		
997310B201-FICO	10	0/10	10/10	10/10		
Transducer frequency (MHz)		30	30	30		

TECHNICAL CODE	PACKAGE	LOTS	ANALYSIS ITEM
A6N3*UT32BB1	PowerSSO-28	997310B202-997310B201	Internal visual

ANALYSIS SUMMARY:

WHAT	WHEN	SAMPLE SIZE /LOTS	RESULT
Passivation and metal	$II_{2} = 500TC (65/+150°C)$	5pcs /ASA	No passivation cracks (photo 1-3)
	JL3+5001C (-65/+150°C)	5pcs /FICO	No passivation cracks (photo 4-6)

DOCUMENTATION:

TEST EQUIPMENT: LEICA (Optical Microscope)

TECHNICAL CODE	PACKAGE	LOT	ANALYSIS ITEM
A6N3*UT32BB1	PowerSSO-28	997310B202-997310B201	SEM inspection

ANALYSIS SUMMARY:

WHAT	WHEN	SAMPLE SIZE	RESULT
Stitch-bond on lead	U.2.500TC (C5/: 1500C)	5pcs/ ASA	No visible defect (photo 1-3)
and ball bond	JL3+3001C (-05/+130 C)	5pcs/ FICO	No visible defect (photo 4-6)

DOCUMENTATION:

TEST EQUIPMENT: HITACHI (Scanning Electron Microscope)

TECHNICAL CODE	PACKAGE	LOT	ANALYSIS ITEM
A6N3*UT32BB1	PowerSSO-28	997310B202-997310B201	Wire pull-test

Wire type	:	Au, 1.3 mil
LSL (g)	:	5.5

Sample size (pcs)	:	5	
Sample size (wires)	:	100	

Esilure mode		JL3@260°C+500 TC (-65/+150°C)		
Failure mode		ASA	FICO	
2: BALL NECK	mean (g)	11.63	11.89	
	stdev (g)	0.88	0.99	
-	min (g)	9.29	9.44	
	max (g)	13.28	14.15	
	occurrence	100%	100%	

Failura mada]	HTS 1000h 150°C		
Fanure mode		ASA	FICO	
	-			
2: BALL NECK	mean (g)	11.67	11.39	
	stdev (g)	1.16	1.27	
-	min (g)	8.97	7.73	
	max (g)	13.93	13.72	
	occurrence	100%	100%	

Remarks: neither abnormal break loads, nor forbidden failure modes. AEC-Q100 criteria after TC passed.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2008 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com