

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN MPA-PMT/06/2199 Notification Date 12/08/2006

Power MOSFET silicon Line optimization for the type STP75NF75

PMT - POWER MOSFET

Product Identification (Product Family/Commercial Product)	STP75NF75
Type of change	Waferfab process change
Reason for change	To improve Back-End throughput
Description of the change	Die Lay-Out has been optimized to allow a new improved Bonding technique called RIBBON.
Product Line(s) and/or Part Number(s)	See attached
Description of the Qualification Plan	See attached
Change Product Identification	"&" on marking area
Manufacturing Location(s)	

Table 1. Change Identification

Table 2. Change Implementation Schedule

Forecasted implementation date for change	07-Mar-2007
Forecasted availabillity date of samples for customer	04-Dec-2006
Forecasted date for STMicroelectronics change Qualification Plan results availability	04-Dec-2006
Estimated date of changed product first shipment	07-Mar-2007

Table 3. Change Responsibility

	Name	Signature	Date
Division Product Manager	lan Wilson		Dec.04 ,06
Division Q.A. Manager	Giuseppe Falcone		Dec.04 ,06
Division Marketing Manager	Maurizio Giudice		Dec.04 ,06

Table 4. List of Attachments

Customer Part numbers list	
Qualification Plan results	

	>
Customer Acknowledgement of Receipt	PCN MPA-PMT/06/2199
Please sign and return to STMicroelectronics S	Sales Office Notification Date 12/08/2006
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

STP75NF75

General features

Туре	V _{DSS}	R _{DS(on)}	۱ _D
STP75NF75	75V	<0.011Ω	80A

- Exceptional dv/dt capability
- 100% avalanche tested

Description

This Power MOSFET series realized with STMicroelectronics unique STripFET[™] process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced highefficiency, high-frequency isolated DC-DC converters for Telecom and Computer applications. It is also intended for any applications with low gate drive requirements.

Applications

Switching application

Internal schematic diagram

Order codes

Part number	Marking	Package	Packaging
STP75NF75	P75NF75	TO-220	Tube

December 2	2006
------------	------

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Revision history1	1

1

Electrical ratings

Table I. Absolute maximum rating	Table 1.	Absolute maximu	m ratings
----------------------------------	----------	-----------------	-----------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	75	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at $T_C = 25^{\circ}C$	80	А
I _D	Drain current (continuous) at $T_C=100^{\circ}C$	70	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	320	А
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	300	W
	Derating factor	2.0	W/°C
dv/dt (2)	Peak diode recovery voltage slope	1.2	V/ns
E _{AS} ⁽³⁾	Single pulse avalanche energy	700	J
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

1. Pulse width limited by safe operating area

2. $I_{SD} \leq 0.0$ di/dt ≤ 300 A/µs, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$

3. Starting $T_J = 25 \text{ }^{o}\text{C}$, $I_D = 40\text{A}$, $V_{DD} = 37.5\text{V}$

Table 2. T	hermal data
------------	-------------

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case max	0.5	°C/W
R _{thJA}	Thermal resistance junction-ambient max	62.5	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose ⁽¹⁾	300	°C

1. 1.6mm from case for 10sec)

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250μΑ, V _{GS} = 0	75			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating, V _{DS} = Max rating @125°C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 40A		0.0095	0.011	Ω

Table 3. On/off states

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15V, I _D = 40A		20		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f = 1 MHz, V _{GS} = 0		3200 610 160		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} = 37.5V, I _D = 80A V _{GS} =10V		90 17 34		nC nC nC

1. Pulsed: pulse duration=300 μ s, duty cycle 1.5%

	- · · · · · · · · · · · · · · · · · · ·					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V _{DD} = 37.5V, I _D = 40A, R _G =4.7Ω, V _{GS} =10V <i>Figure 12 on page 8</i>		18 77 112 55		ns ns ns ns

Table 5.Switching times

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				80	А
$I_{SDM}^{(1)}$	Source-drain current (pulsed)				320	А
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 80A, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 80A, di/dt = 100A/μs, V _{DD} = 20V, T _J = 150°C <i>Figure 14 on page 8</i>		91 274 6		ns μC Α

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration=300µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 5. Normalized B_{VDSS} vs temperature

Figure 2.

Thermal impedance

Gate charge vs gate-source voltage Figure 8. Capacitance variations Figure 7.

Figure 9. Normalized gate threshold voltage vs temperature

Figure 10. Normalized on resistance vs temperature

-50

0

Figure 11. Source-drain diode forward characteristics

50

100

TJ(°C)

3 **Test circuit**

Figure 14. Test circuit for inductive load switching and diode recovery times

_V DD 12V 47Κ Ω 1K Ω +100nF I_G=CONST $V_1 = 20V = V_{GMAX}$ 100Ω і́ ≰ D.U.T. ()2200 μF 2.7ΚΩ ۷₆ 47KΩ 1KΩ SC06000

Figure 13. Gate charge test circuit

Figure 16. Unclamped inductive waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

57

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30	1	28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

5 Revision history

Table 7.	Revision	history
----------	----------	---------

Date	Revision	Changes
01-Dec-2006	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

RELIABILITY EVALUATION

ON

STP75NF75 with Ribbon Bonding

ISSUED BY	RELIABILITY DEPARTMENT	Page 1 of 8
	1	

Table of Contents

1.	Introduction	pg. 3
2.	Test vehicles	pg. 4
3.	Failure Criteria	pg. 4
4.	Evaluation plan and results	pg. 5
5.	Appendixes	
	- Technological Characteristics	pg. 6
	- Reliability Test Description	pg. 7

ISSUED BY	RELIABILITY DEPARTMENT	Page 2 of 8
-----------	---------------------------	-------------

Introduction

This report aims at the internal qualification of STP75NF75 N-CHANNEL STripFET[™] II Power MOSFET with Ribbon Bonding.

The Qualification Reliability test trials have been performed in ST Catania Site.

The evaluation results meet ST products qualification targets, therefore the STP75NF75 N-CHANNEL STripFET[™] II Power MOSFET with Ribbon Bonding is qualified.

ISSUED BY	RELIABILITY DEPARTMENT	Page 3 of 8
-----------	---------------------------	-------------

Test Vehicles :

Product Line	Sales Type	Package	
ED7U	STP75NF75	TO-220	

Failure Criteria :

A failed component is a device which becomes inoperative during the test or it fails on meeting the end limits foreseen in the device specification, for one or more than the parameters here below reported

Power MOSFET Main Parameters

Drain Leakage Current (Idss) Gate Leakage Current (Igss) Threshold Voltage (Vgs(th) Forward On Voltage (Vsd) Drain Source On Voltage (Vds(on)) Drain Source Breakdown Voltage (Bvdss)

ISSUED BY	RELIABILITY DEPARTMENT	Page 4 of 8
-----------	---------------------------	-------------

Reliability Evaluation Plan and results

D.U.T.: STP75NF75 Line: ED7U

Package: TO-220

Test	Conditions	S.S.	Requirement	Results
H.T.S.	TA=175℃	77 x 1 Lot	Parameter devia- tion within spec. limits at 1000 hours.	No parameter deviation out of spec. limits at 1000 hours.
T.H.B.	TA=85℃ - RH=85% Vbias= 50V	77 x 1 Lot	Parameter devia- tion within spec. limits at 1000 hours.	No parameter deviation out of spec. limits at 1000 hours.
H.T.R.B.	T.A.=175℃ Vdd=60V	77 x 1 Lot	Parameter devia- tion within spec. limits at 1000 hours.	No parameter deviation out of spec. limits at 1000 hours.
H.T.F.B.	TA=150℃ ; Vgss=20V	77 x 1 Lot	Parameter devia- tion within spec. limits at 1000 hours.	No parameter deviation out of spec. limits at 1000 hours.
PRESSURE POT	TA=121℃ - PA=2Atm	77 x 1 Lot	Parameter devia- tion within spec. limits at 96 hours.	No parameter deviation out of spec. limits at 96 hours.
THERMAL CYCLES AIR TO AIR	TA=-65℃ TO 150℃ 1 HOUR / CYCLE	77 x 1 Lot	Parameter devia- tion within spec. limits at 500 cycles.	No parameter deviation out of spec. limits at 500 cy
THERMAL FATIGUE	TC=105℃ - Pd=4.75W	77 x 1 Lot	Parameter devia- tion within spec. limits at 10k cycles.	No parameter deviation out of spec. limits at 10Kcy.

Technological Characteristics

D.U.T.: STP75NF75 LINE: ED7U PACKAGE: TO-220

DIE	Technology: Material: Metallization – Front : - Back :	N-CHANNEL STripFET [™] II Power MOSFET Silicon <i>Passivation :</i> None : Al/Si (1%) <i>Dimensions :</i> 4870 X 4000 um : Ti-Ni-Au		
DIE ATTACH	(with Pb/Sn/Ag)	FRAME	Frame and lead material: Frame coating : Lead coating :	Copper PINi/NiP Plating Ni/NiP Plating
WIRE BOND	Ultrasonic	WIRE	<i>Material :</i> <i>Dimension :</i>	Al/Mg Gate Al Source Wire 5 mils Gate Ribbon 80X10 mils Source
SEALING	Molding	PACKAGING	Material :	Epoxy Resin

PRODUCTION PLACES:WAFER PROCESSING: SINGAPORE
ASSEMBLY LOCATION: SHENZHEN
Q.A. LOCATION :SHENZHEN

ISSUED BY	RELIABILITY DEPARTMENT	Page 6 of 8
-----------	---------------------------	-------------

Reliability Test Description

High Temperature Reverse Bias (HTRB)

This test is performed in order to demonstrate the quality and reliability of devices subjected to an elevated temperature and simultaneously reverse biased. The purpose of this test is to detect surface defects such as poor passivation, presence of contaminants, etc...

High Temperature Forward Bias (HTFB)

This test is performed in order to demonstrate the quality and reliability of devices subjected to an elevated temperature and simultaneously forward gate biased. The purpose of this test is to detect surface and gate oxide defects.

High Temperature Storage (HTS)

This stress test is performed to check the device life in a high temperature ambient. Specimens are put for a period of time inside a stove in free air. Detectable failure mechanisms are presence of contaminants and metal corrosion.

Thermal Cycles/Shocks

The purpose of this test is to determine the resistance of devices to exposure to extreme changes in temperature. Specimens are first placed in a suitable environment at a low temperature and then transferred to one at high temperature. Effects of thermal cycles/shocks include cracking of die, breaking of wire bonding, mechanical damage to the device case.

ISSUED BY	RELIABILITY DEPARTMENT	Page 7 of 8

Reliability Test Description (continued)

Temperature Humidity Bias (THB)

This test is performed to check the device life in a high humidity ambient. Specimens are subjected to a permanent bias in a climatic chamber in the presence of steam. Detectable failure mechanisms are metal corrosion and moulding defects.

Pressure Pot

This test is performed in order to check device life in a high humidity ambient in an accelerated way. Specimens are subjected for a period of time inside an autoclave in the presence of steam and pressure. Detectable failure mechanism is metal corrosion.

Thermal Fatigue

This test is performed to demonstrate the quality and reliability of devices exposed to cyclic variation in electrical stress between "on" and "off" conditions and resultant cyclic variation in device and case temperatures (thermomechanical stress). The purpose of this test is to detect assembly defects : improper die-attach, bonding weakness and thermal mismatch among various components of the package.

ISSUED BY	RELIABILITY DEPARTMENT	Page 8 of 8
-----------	---------------------------	-------------

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST,ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

